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ABSTRACT
Climate models are often run at multiple levels of sophistication

to balance accuracy and efficiency. Multi-fidelity surrogate model-

ing reduces the computational cost by fusing different simulation

outputs. Cheap data generated from low-fidelity simulators can be

combined with limited high-quality data generated by an expen-

sive high-fidelity simulator. Existing methods based on Gaussian

processes rely on strong assumptions of the kernel functions and

can hardly scale to high-dimensional settings. We propose Multi-

fidelity Hierarchical Neural Processes (MF-HNP), a unified neural

latent variable model for multi-fidelity surrogate modeling. MF-HNP
inherits the flexibility and scalability of Neural Processes. The latent

variables transform the correlations among different fidelity levels

from observations to the latent space. The predictions across fideli-

ties are conditionally independent given the latent states. It helps

alleviate the error propagation issue in existing methods. MF-HNP
is flexible enough to handle non-nested high dimensional data at

different fidelity levels with varying input and output dimensions.

We evaluate MF-HNP on climate modeling, achieving competitive

performance in terms of accuracy and uncertainty estimation. In

contrast to deep Gaussian Processes [4] with only low-dimensional

(< 10) tasks, our method shows great promise for speeding up

high-dimensional (over 45, 000) complex climate simulations.
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1 INTRODUCTION
Climate models characterize the behavior of the climate system.

They use mathematical equations to simulate how energy and mat-

ter interact in different parts of the ocean, atmosphere, land. The

input describes the properties and environmental conditions for

simulation, and the output describes the quantities of interest. Cli-

mate models are important tools for improving our understanding

and predictability of climate behavior on seasonal, annual, decadal,

and centennial time scales.

Climate models can be simulated at multiple levels of sophisti-

cation. High-fidelity models produce accurate output at a higher

cost, whereas low-fidelity models generate less accurate output at

a cheaper cost. To balance the trade-off between computational ef-

ficiency and prediction accuracy, multi-fidelity modeling [24] aims

to learn a surrogate model that combines simulation outputs at

multiple fidelity levels to accelerate learning. Therefore, we can

obtain predictions and uncertainty analysis at high fidelity while

leveraging cheap low-fidelity simulations for speedup.

Since the pioneering work of Kennedy and Hagan [13] on mod-

eling oil reservoir simulator, Gaussian processes (GPs) [30] have

become the predominant tools in multi-fidelity modeling. GPs effec-

tively serve as surrogate models to emulate the output distribution

of complex physical systems with uncertainty [17, 26, 37]. How-

ever, GPs often struggle with high-dimensional data and require

prior knowledge for kernel design. Multi-fidelity GPs also require

a nested data structure [25] and the same input dimension at each

fidelity level [4], which significantly hinders their applicability in

the real world. Therefore, efforts to combine deep learning and GPs

have undergone significant growth in machine learning commu-

nity [5, 29, 31, 38]. One of the most scalable frameworks of such

combinations is Neural processes (NP) [7, 8, 15], which is a neural

latent variable model.

Unfortunately, existing NPmodels aremainly designed for single-

fidelity data and cannot handle multi-fidelity outputs. While we can

train multiple NPs separately, one for each fidelity, this approach

fails to exploit the relations among multi-fidelity models governed

by the same physical process. Furthermore, models with more fi-

delity levels require more training data, which leads to higher com-

putational costs. An alternative is to learn the relationship between

low- and high-fidelity model outputs and model the correlation

function with NP [36]. But this approach always requires paired

data at the low- and high-fidelity level. Another limitation is high
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dimensionality. The correlation function maps from the joint input-

output space of the low-fidelity model to the high-fidelity output,

which is prone to over-fitting.

In this work, we propose Multi-Fidelity Hierarchical Neural Pro-

cess (MF-HNP), the first unified framework for scalable multi-fidelity

modeling in neural processes family. Specifically, MF-HNP inher-

its the properties of Bayesian neural latent variable model while

learning the joint distribution of multi-fidelity output. We design a

unified evidence lower bound (ELBO) for the joined distribution as

training loss.

In summary, our contributions include:

• A novel multi-fidelity surrogate model, Multi-fidelity Hier-

archical Neural Processes (MF-HNP). Its unified framework

makes it flexible to fuse data with varying input and output

dimensions at different fidelity levels.

• A novel Neural Processes architecture with conditional in-

dependence at each fidelity level. It fully utilizes the multi-

fidelity data, reduces the input dimension, and alleviates

error propagation in forecasting.

• Real-world large-scale multi-fidelity application on climate

modeling to show competitive accuracy and uncertainty

estimation performance.

2 RELATEDWORK
Multi-fidelity Modeling. Multi-fidelity surrogate modeling is ex-

tensively used in science and engineering fields, from climate sci-

ence [11, 33] to aerospace systems [2]. The pioneering work of

[13] uses GP to relate models at multiple fidelity levels with an

autoregressive model. [17] proposed recursive GP with a nested

structure in the input domain for fast inference. [26, 27] deals with

high-dimensional GP settings by taking Fourier transformation of

the kernel function. [25] proposed multi-fidelity Gaussian processes

(NARGP) but it assumes a nested structure in the input domain

to enable a sequential training process at each fidelity level. One

extreme case we include in our experiment is when the data sets at

low- and high-fidelity levels are disjoint. None of the high-fidelity

data could be used for training, which causes NARGP to fail in this

case. Additionally, the prediction error of the low-fidelity model

will propagate to high-fidelity output and explode as the number of

fidelity levels increases. [37] proposed a Multi-Fidelity High-Order

GP model to speed up the physical simulation. They extended the

classical Linear Model of Coregionalization (LMC) to nonlinear case

and placed a matrix GP prior on the weight functions. Their method

is designed for high-dimensional outputs rather than both high-

dimensional inputs and outputs. Deep Gaussian processes (DGP)

[4] designs a single objective to optimize the kernel parameters

at each fidelity level jointly. However, the DGP architecture intro-

duces a constraint that requires the inputs at each fidelity level to

be defined by the same domain with the same dimension. Moreover,

DGP is still based on GPs, which are not scalable for applications

with high-dimensional data. In contrast, NP is flexible and much

more scalable.

Deep learning has been applied to multi-fidelity modeling. For

example, [9] uses deep neural networks to combine parameter-

dependent output quantities. [22] propose a composite neural net-

work for multi-fidelity data from inverse PDE problems. [21] pro-

pose Bayesian neural nets for multi-fidelity modeling. [6] use trans-

fer learning to fine-tune the high-fidelity surrogate model with the

deep neural network trained with low-fidelity data. [4, 10] propose

deep Gaussian process to capture nonlinear correlations between

fidelities, but their method cannot handle the case where different

fidelities have data with different dimensions. Tangentially, multi-

fidelity methods have also recently been investigated in Bayesian

optimization, active learning, and bandit problems [12, 18, 19, 28].

Neural Processes. Neural Processes (NPs) [7, 14, 20, 32] provide
scalable and expressive alternatives to GPs for modeling stochastic

processes. However, none of the existing NP models can efficiently

incorporate multi-fidelity data. Earlier work by [29] combines multi-

fidelity GP with deep learning by placing a GP prior on the features

learned by deep neural networks. Their model, however, remains

closer to GPs. Quite recently, [36] proposed multi-fidelity neural

process with physics constraints (MFPC-Net). They use NP to learn

the correlation between multi-fidelity data by mapping both the

input and output of the low-fidelity model to the high-fidelity model

output. But their model requires paired data and cannot utilize the

remaining unpaired data at the low-fidelity level.

3 BACKGROUND
3.1 Muti-Fidelity Modeling
Formally, given input domain X ⊆ R𝑑𝑥 and output domain Y ⊆
R𝑑𝑦 , a model is a (stochastic) function 𝑓 : X → Y. Evaluations

of 𝑓 incur computational costs 𝑐 > 0. The computational costs

𝑐 are much higher at higher fidelity level. Therefore, we assume

that a limited amount of expensive high-fidelity data is available

for training. In multi-fidelity modeling, we have a set of functions

{𝑓1, · · · , 𝑓𝐾 } that approximate 𝑓 with increasing accuracy and com-

putational cost. We aim to learn a surrogate model
ˆ𝑓𝐾 that combines

information from low-fidelity models with a small amount of data

from high-fidelity models.

Given parameters 𝑥𝑘 at fidelity level 𝑘 , we query the simulator

to obtain data set from different scenarios D𝑘 ≡ {𝑥𝑘,𝑖 , [𝑦𝑘,𝑖 ]𝑆𝑠=1
}𝑖 ,

where [𝑦𝑘,𝑖 ]𝑆𝑠=1
are 𝑆 samples generated by 𝑓𝑘 (𝑥𝑘,𝑖 ) for scenario

𝑖 . We aim to learn a deep surrogate model that approximates the

data distribution 𝑝 (𝑦𝑡
𝐾
|𝑥𝑡
𝐾
,D𝑐

1
,D𝑐

2
, ...,D𝑐

𝐾
) at the highest fidelity

level 𝐾 over the target set 𝑦𝑡
𝐾
, given context sets at different fidelity

levels D𝑐
𝑘
⊂ D𝑘 and the corresponding 𝑥𝑡

𝐾
.

For simplicity, we use two levels of fidelity, but our framework

can be generalized easily. Let us denote the low-fidelity data asD𝑙 ≡
{𝑥𝑙,𝑖 , [𝑦𝑙,𝑖 ]𝑆𝑠=1

}𝑖 and high-fidelity data as Dℎ ≡ {𝑥ℎ,𝑖 , [𝑦ℎ,𝑖 ]𝑆𝑠=1
}𝑖 . If

Dℎ ⊂ D𝑙 , the data domain has the nested structure. If Dℎ = D𝑙 ,

we say the low- and high-fidelity data sets are paired. Low-fidelity

data can be split into context sets D𝑐
𝑙
≡ {𝑥𝑐

𝑙,𝑛
, [𝑦𝑐

𝑙,𝑛
]𝑆
𝑠=1

}𝑁𝑙

𝑛=1
and

target sets D𝑡
𝑙
≡ {𝑥𝑡

𝑙,𝑚
, [𝑦𝑡

𝑙,𝑚
]𝑆
𝑠=1

}𝑀𝑙

𝑚=1
. Similarly, high-fidelity data

can be split into context sets D𝑐
ℎ
≡ {𝑥𝑐

ℎ,𝑛
, [𝑦𝑐

ℎ,𝑛
]𝑆
𝑠=1

}𝑁ℎ

𝑛=1
and target

sets D𝑡
ℎ
≡ {𝑥𝑡

ℎ,𝑚
, [𝑦𝑡

ℎ,𝑚
]𝑆
𝑠=1

}𝑀ℎ

𝑚=1
.
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Figure 1: Graphical models for Single-Fidelity Neural Process (left), Multi-Fidelity Neural Process (middle), Multi-Fidelity
Hierarchical Neural Process (right). Shaded circles denote observed variables and hollow circle represent latent variables. The
directed edges represent conditional dependence.

3.2 Neural Processes
Neural processes (NPs) [8] are the family of conditional latent vari-

able models for implicit stochastic processes (SP𝑠) [35]. NPs are in
between GPs and neural networks (NNs). Like GPs, NPs can repre-

sent distributions over functions and estimate the uncertainty of the

predictions. But they are more scalable in high dimensions and can

easily adapt to new observations. According to Kolmogorov Exten-

sion Theorem [23], NPs meet exchangeability and consistency con-

ditions to define SP𝑠 . Formally, NP includes local latent variables

𝑧 ∈ R𝑑𝑧 and global latent variables 𝜃 and is trained by the context

setD𝑐 ≡ {𝑥𝑐𝑛, [𝑦𝑐𝑛]𝑆𝑠=1
}𝑁
𝑛=1

and target setsD𝑡 ≡ {𝑥𝑡𝑚, [𝑦𝑡𝑚]𝑆
𝑠=1

}𝑀
𝑚=1

.

Learning the posterior of 𝑧 and 𝜃 is equivalent to maximizing the

following posterior likelihood:

𝑆∏
𝑠=1

𝑝 (𝑦𝑡𝑠,1:𝑀 |𝑥𝑡
1:𝑀 ,D

𝑐 , 𝜃 ) =

𝑆∏
𝑠=1

∫
𝑝 (𝑧𝑠 |D𝑐 , 𝜃 )

𝑀∏
𝑚=1

𝑝 (𝑦𝑡𝑠,𝑚 |𝑧𝑠 , 𝑥𝑡𝑚, 𝜃 )𝑑𝑧𝑠

We omit the sample index 𝑠 in what follows.

Approximate Inference. Since marginalizing over the local

latent variables 𝑧 is intractable, the NP family [8, 15] introduces

approximate inference on latent variables and derives the corre-

sponding evidence lower bound (ELBO) for the training process.

log 𝑝 (𝑦𝑡
1:𝑀 |𝑥𝑡

1:𝑀 ,D
𝑐 , 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐∪D𝑡 )
[ 𝑀∑︁
𝑚=1

log𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ) + log

𝑞𝜙 (𝑧 |D𝑐 )
𝑞𝜙 (𝑧 |D𝑐 ∪ D𝑡 )

]
Note that this variational approach approximates the intractable

true posterior 𝑝 (𝑧 |D𝑐 , 𝜃 ) with the approximate posterior 𝑞𝜙 (𝑧 |D𝑐 )
. This approach is also an amortized inference method as the global

parameters 𝜙 are shared by all context data points. It is efficient

during the test time (no per-data-point optimization) [34].

NPs use NNs to represent 𝑞𝜙 (𝑧 |D𝑐 ), and 𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ). 𝑞𝜙 () is
referred as the encoder network (Enc, determined by parameters

𝜙). 𝑝 (.|𝜃 ) is referred as the decoder network (Dec, determined by

parameters 𝜃 ). These two networks assume that the latent vari-

able 𝑧 and outputs 𝑦 follow the factorized Gaussian distribution

determined by mean and variance.

𝑞𝜙 (𝑧 |D𝑐 ) = N(𝑧 |𝜇𝑧 , diag(𝜎2

𝑧 ))
𝜇𝑧 = Enc𝜇𝑧 ,𝜙 (D

𝑐 ), 𝜎2

𝑧 = Enc𝜎2

𝑧 ,𝜙
(D𝑐 )

𝑝 (𝑦𝑡𝑚 |𝑧, 𝑥𝑡𝑚, 𝜃 ) = N(𝑦𝑡𝑚 |𝜇𝑦, diag(𝜎2

𝑦))
𝜇𝑦 = Dec𝜇𝑦 ,𝜃 (𝑧, 𝑥

𝑡
𝑚), 𝜎2

𝑦 = Dec𝜎2

𝑦 ,𝜃
(𝑧, 𝑥𝑡𝑚)

Context Aggregation. Context aggregation aggregates all con-

text points D𝑐
to infer latent variables 𝑧. To meet the exchangeabil-

ity condition, the context information acquired by NPs should be in-

variant to the order of the data points. Garnelo et al. [7, 8], Kim et al.

[14] use mean aggregation (MA). They map the data pair(𝑥𝑐𝑛, 𝑦𝑐𝑛) to
a latent representation 𝑟𝑛 = Enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) ∈ R𝑑𝑟 , then apply the

mean operation to the entire set {𝑟𝑛}𝑁𝑛=1
to obtain the aggregated

latent representation 𝑟 . 𝑟 can be mapped to 𝜇𝑧 and 𝜎
2

𝑧 to represent

the posterior 𝑞𝜙 (𝑧 |D𝑐 ) with an additional neural network encoder.

MA uses two encoder networks. Enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛) ∈ R𝑑𝑟 maps the

data pair(𝑥𝑐𝑛, 𝑦𝑐𝑛) to 𝑟𝑛 for context aggregation. Enc𝑧,𝜙 (𝑟 ) ∈ R𝑑𝑧
maps 𝑟 to 𝜇𝑧 and 𝜎

2

𝑧 for latent parameter inference.

Volpp et al. [34] proposed Bayesian aggregation (BA), which

merges these two steps. They define a probabilistic observation

model 𝑝 (𝑟 |𝑧) for 𝑟 depended on 𝑧, and update 𝑝 (𝑧) posterior using
the Bayes rule 𝑝 (𝑧 |𝑟𝑛) = 𝑝 (𝑟𝑛 |𝑧)𝑝 (𝑧) |𝑝 (𝑟𝑛) given latent observa-

tion 𝑟𝑛 = Enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛). The corresponding factorized Gaussian

for the inference step:

𝑝 (𝑟𝑛 |𝑧) = N(𝑟𝑛 |𝑧, diag(𝜎2

𝑟𝑛
))

𝑟𝑛 = Enc𝑟,𝜙 (𝑥𝑐𝑛, 𝑦𝑐𝑛)
𝜎2

𝑟𝑛
= Enc𝜎2

𝑟𝑛 ,𝜙
(𝑥𝑐𝑛, 𝑦𝑐𝑛)

They use a factorizedGaussian prior 𝑝0 (𝑧) ≡ N (𝑧 |𝜇𝑧,0, diag(𝜎2

𝑧,0
))

to derive the parameters of posterior 𝑞𝜙 (𝑧 |D𝑐 )

𝜎2

𝑧 =
[
(𝜎2

𝑧,0)
⊖ +

𝑁∑︁
𝑛=1

(𝜎2

𝑟𝑛
)⊖)

]⊖
,

𝜇𝑧 = 𝜇𝑧,0 + 𝜎2

𝑧 ⊙
𝑁∑︁
𝑛=1

(𝑟𝑛 − 𝜇𝑧,0) ⊘ (𝜎2

𝑟𝑛
).

Compared with MA, which treats every context sample equally,

BA uses the observation variance 𝜎2

𝑟𝑛
to weight the importance of
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each latent representation 𝑟𝑛 . BA also represents a permutation-

invariant operation on D𝑐
.

3.3 Single-Fidelity Neural Processes (SF-NP)
A simple way to apply NP to the multi-fidelity problem is to train

NP only using the data at high-fidelity level only assuming it is

not correlated with the data at the low-fidelity level. We name it

as Single-Fidelity Neural Processes baseline (SF-NP). During the

training process, the high-level training data can be randomly split

into context set D𝑐
ℎ
and target set D𝑡

ℎ
. We use the corresponding

evidence lower bound (ELBO) as the training loss function:

log𝑝 (𝑦𝑡
ℎ,1:𝑀

|𝑥𝑡
ℎ,1:𝑀

,D𝑐
ℎ
, 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐
ℎ
∪D𝑡

ℎ
)
[ 𝑀∑︁
𝑚=1

log 𝑝 (𝑦𝑡
ℎ,𝑚

|𝑧, 𝑥𝑡
ℎ,𝑚

, 𝜃 ) + 𝑙𝑜𝑔
𝑞𝜙 (𝑧 |D𝑐

ℎ
)

𝑞𝜙 (𝑧 |D𝑐
ℎ
∪ D𝑡

ℎ
)
]

where 𝑝 (𝜃 ) is a decoder in a neural network and 𝑞𝜙 indicates a

encoder to infer the latent variable 𝑧.

3.4 Multi-Fidelity Neural Processes (MF-NP)
Multi-Fidelity Neural Processes (MF-NP) [36] assume a compre-

hensive correlation between multi-fidelity models 𝑦ℎ and 𝑦𝑙 can be

represented as:

𝑦ℎ (𝑥) = G(𝑦𝑙 (𝑥)) + 𝛿 (𝑥),

where G is a nonlinear function mapping the low-fidelity data to

high-fidelity data, and 𝛿 (𝑥) is space dependent bias between fi-

delity levels. To train MF-NP model, we take data pairs (𝑥,𝑦𝑙 (𝑥))
as the input to predict the corresponding 𝑦ℎ (𝑥). The correspond-
ing context sets D𝑐

𝑙
≡ {𝑥𝑐

ℎ,𝑛
, 𝑦𝑐
𝑙,𝑛
, 𝑦𝑐
ℎ,𝑛

}𝑁𝑙

𝑛=1
and target sets D𝑡

𝑙
≡

{𝑥𝑡
ℎ,𝑚

, 𝑦𝑡
𝑙,𝑚
, 𝑦𝑡
ℎ,𝑛

}𝑀𝑙

𝑚=1
. The ELBO for the training process is:

log𝑝 (𝑦𝑡
ℎ,1:𝑀

|𝑥𝑡
ℎ,1:𝑀

, 𝑦𝑡
𝑙,1:𝑀

,D𝑐
ℎ
, 𝜃 ) ≥

E𝑞𝜙 (𝑧 |D𝑐
ℎ
∪D𝑡

ℎ
)
[ 𝑀∑︁
𝑚=1

log𝑝 (𝑦𝑡
ℎ,𝑚

|𝑧, 𝑥𝑡
ℎ,𝑚

, 𝑦𝑡
𝑙,𝑚
, 𝜃 )+

𝑙𝑜𝑔
𝑞𝜙 (𝑧 |D𝑐

ℎ
)

𝑞𝜙 (𝑧 |D𝑐
ℎ
∪ D𝑡

ℎ
)
]

Since this method requires (𝑥,𝑦𝑙 (𝑥), 𝑦ℎ (𝑥)) for input and output,
it can not fully utilize the training data at low-fidelity level which

𝑦ℎ (𝑥) is unknown. Furthermore, MF-NP requires a nested data

structure, which means the training inputs of high-fidelity level

need to be a subset of the training inputs of low-fidelity level. On

the contrary, if the training inputs at the different fidelity level are

disjoint, no data set can be used for training.

4 METHODOLOGY
In this section, we introduce our proposed Multi-fidelity Hierar-

chical Neural Processes (MF-HNP) model in three subsections. The

first section discusses the unique architecture of hierarchical neu-

ral processes for the multi-fidelity problem. Then, we develop the

corresponding approximate inference method with a unified ELBO.

Finally, we introduce 3 ELBO variants for scalable training.

4.1 Multi-fidelity Hierarchical Neural Processes
Our high-level goal is to train a deep surrogate model to mimic the

behavior of a complex stochastic simulator at the highest fidelity

level. MF-HNP inherits the properties of Bayesian neural latent vari-

able model while learning the joint distribution of multi-fidelity

output. It adopts a single objective function for multi-fidelity train-

ing. It reduces the input dimension and alleviates error propagation

by introducing the hierarchical structure in the dependency graph.

Figure 1 compares the graphical model of MF-HNP with Multi-

fidelity Neural Process (MF-NP) [36] and Single-Fidelity Neural

Process (SF-NP). SF-NP assumes that the high-fidelity data is inde-

pendent of the low-fidelity data and reduces the model to vanilla

NP setting. MF-HNP assignes latent variables 𝑧𝑙 and 𝑧ℎ at each fi-

delity level. The prior of 𝑧ℎ is conditioned on 𝑧𝑙 , parameterized by

a neural network. We use Monte Carlo (MC) sampling method to

approximate the posterior of 𝑧𝑙 and 𝑧ℎ to calculate the ELBO.

One key feature of MF-HNP is that the model outputs at each

fidelity level are conditionally independent given the correspond-

ing latent state. This design transforms the correlations between

fidelity levels from the input and output space to the latent space.

Specifically, compared with MF-NP where 𝑦ℎ depends on (𝑥ℎ, 𝑦𝑙 )
input pairs given 𝑧,𝑦ℎ only depends on input 𝑥ℎ given 𝑧ℎ in MF-HNP.
It helps MF-HNP to significantly reduce the high-fidelity input di-

mension. In addition, local latent variables at each level of fidelity

enable MF-HNP to perform both inference and generative modeling

separately at each fidelity level. It means MF-HNPcan fully utilize the
low-fidelity data and is applicable to arbitrary multi-fidelity data

sets. As MF-HNPcan reduce the input dimension and fully utilize the

training data, its prediction performance is significantly improved

with limited training data.

Note that in two fidelity setup, MF-HNP is related to Doubly Sto-

chastic Variational Neural Process (DSVNP) model proposed by

Wang and Van Hoof [35] which introduces local latent variables

together with the global latent variables. Different from DSVNP,

MF-HNP gives latent variables with separable representations. 𝑧𝑙 , 𝑧ℎ
represent the low- and high-fidelity functional, respectively.

4.2 Unified ELBO
We design a unified ELBO based on the model architecture of

MF-HNP. Unlike vanilla NPs, we need to infer the latent variables

𝑧𝑙 and 𝑧ℎ at each fidelity level instead of the global 𝑧. Therefore,

we use two encoders 𝑞𝜙𝑙 (𝑧𝑙 |D
𝑐
𝑙
), 𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D

𝑐
ℎ
), and two decoders

𝑝 (𝑦𝑡
𝑙
|𝑧𝑙 , 𝑥𝑡𝑙 , 𝜃𝑙 ), 𝑝 (𝑦

𝑡
ℎ
|𝑧ℎ, 𝑥𝑡ℎ, 𝜃ℎ) for the two-fidelity level setup. These

four networks approximate the distributions of the latent variables

𝑧𝑙 , 𝑧ℎ and outputs 𝑦𝑙 and 𝑦ℎ . Assuming factorized Gaussian distri-

bution, we can parameterize the distributions by their mean and

variance.

𝑞𝜙𝑙 (𝑧𝑙 |D
𝑐
𝑙
) = N(𝑧𝑙 |𝜇𝑧𝑙 , diag(𝜎2

𝑧𝑙
))

𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D
𝑐
ℎ
) = N(𝑧ℎ |𝜇𝑧ℎ , diag(𝜎2

𝑧ℎ
))

𝑝 (𝑦𝑡
𝑙,𝑚

|𝑧𝑙 , 𝑥𝑡𝑙,𝑚, 𝜃𝑙 ) = N(𝑦𝑡
𝑙,𝑚

|𝜇𝑙,𝑚, diag(𝜎2

𝑦𝑙
))

𝑝 (𝑦𝑡
ℎ,𝑚

|𝑧ℎ, 𝑥𝑡ℎ,𝑚, 𝜃ℎ) = N(𝑦𝑡
ℎ,𝑚

|𝜇ℎ,𝑚, diag(𝜎2

𝑦ℎ
))

where
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Table 1: Comparison of different NP models at high-fidelity level.

Neural Processes Family Prior Distribution Posterior Distribution Generative model

SF-NP [8] 𝑞(𝑧ℎ |D𝑐
ℎ
) 𝑝 (𝑧 |D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧)

MF-NP [36] 𝑞(𝑧ℎ |D𝑐
ℎ
) 𝑝 (𝑧 |D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑦𝑡
𝑙
, 𝑧)

MF-HNP(as) 𝑞(𝑧ℎ |𝑧
(𝑠)
𝑙
,D𝑐

ℎ
) 𝑝 (𝑧ℎ |𝑧

(𝑠)
𝑙
,D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

MF-HNP(mean) 𝑞(𝑧ℎ |𝜇𝑧𝑙 ,D𝑐
ℎ
) 𝑝 (𝑧ℎ |𝜇𝑧𝑙 ,D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

MF-HNP(mean,std) 𝑞(𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D𝑐
ℎ
) 𝑝 (𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D𝑐

ℎ
,D𝑡

ℎ
) 𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧ℎ)

𝜇𝑧𝑙 = Enc𝜇𝑧𝑙 ,𝜙𝑙
(D𝑐

𝑙
), 𝜎2

𝑧𝑙
= Enc𝜎2

𝑧𝑙
,𝜙𝑙

(D𝑐
𝑙
)

𝜇𝑧ℎ = Enc𝜇𝑧ℎ ,𝜙ℎ
(𝑧𝑙 ,D𝑐

ℎ
), 𝜎2

𝑧ℎ
= Enc𝜎2

𝑧ℎ
,𝜙ℎ

(𝑧𝑙 ,D𝑐
ℎ
)

𝜇𝑦𝑙 = Dec𝜇𝑦𝑙 ,𝜃𝑙
(𝑧𝑙 , 𝑥𝑡𝑙,𝑚), 𝜎2

𝑦𝑙
= Dec𝜎2

𝑦𝑙
,𝜃𝑙

(𝑧𝑙 , 𝑥𝑡𝑙,𝑚)

𝜇𝑦ℎ = Dec𝜇𝑦ℎ ,𝜃ℎ
(𝑧ℎ, 𝑥𝑡ℎ,𝑚), 𝜎2

𝑦ℎ
= Dec𝜎2

𝑦ℎ
,𝜃ℎ

(𝑧ℎ, 𝑥𝑡ℎ,𝑚)

We derive the unified ELBO containing these four terms:

log𝑝 (𝑦𝑡
𝑙
, 𝑦𝑡
𝑙
|𝑥𝑡
𝑙
, 𝑥𝑡
ℎ
,D𝑐

𝑙
,D𝑐

ℎ
, 𝜃 ) ≥

E𝑞𝜙 (𝑧𝑙 ,𝑧ℎ |D𝑐
𝑙
∪D𝑡

𝑙
,D𝑐

ℎ
∪D𝑡

ℎ
)
[

log 𝑝 (𝑦𝑡
𝑙
, 𝑦𝑡
ℎ
|𝑧𝑙 , 𝑧ℎ, 𝑥𝑡𝑙 , 𝑥

𝑡
ℎ
, 𝜃 )

+ log

𝑞𝜙 (𝑧𝑙 , 𝑧ℎ |D𝑐
𝑙
,D𝑐

ℎ
)

𝑞𝜙 (𝑧𝑙 , 𝑧ℎ |D𝑐
𝑙
∪ D𝑡

𝑙
,D𝑐

ℎ
∪ D𝑡

ℎ
)
]

= E𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D𝑐
ℎ
∪D𝑡

ℎ
)𝑞𝜙𝑙 (𝑧𝑙 |D

𝑐
𝑙
∪D𝑡

𝑙
)
[

log𝑝 (𝑦𝑡
ℎ
|𝑧ℎ, 𝑥𝑡ℎ, 𝜃ℎ)

+ log𝑝 (𝑦𝑡
𝑙
|𝑧𝑙 , 𝑥𝑡𝑙 , 𝜃𝑙 ) + log

𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D
𝑐
ℎ
)

𝑞𝜙ℎ (𝑧ℎ |𝑧𝑙 ,D
𝑐
ℎ
∪ D𝑡

ℎ
)

+
𝑞𝜙𝑙 (𝑧𝑙 |D

𝑐
𝑙
)

𝑞𝜙𝑙 (𝑧𝑙 |D
𝑐
𝑙
∪ D𝑡

𝑙
)
]

(1)

The derivation is based on the conditional independence of

MF-HNParchitecture shown in Figure 1.

4.3 Scalable Training
To calculate the ELBO in Equation 1 for the proposed MF-HNPmodel,

we use Monte Carlo (MC) sampling to optimize the following ob-

jective function:

L𝑀𝐶 =
1

𝐾

𝐾∑︁
𝑘=1

[ 1

𝑆

𝑆∑︁
𝑠=1

log 𝑝 (𝑦𝑡
ℎ
|𝑥𝑡
ℎ
, 𝑧

(𝑠)
ℎ
, 𝑧

(𝑘)
𝑙

)

− KL[𝑞(𝑧ℎ |𝑧
(𝑘)
𝑙
,D𝑐

ℎ
,D𝑡

ℎ
))∥𝑝 (𝑧ℎ |𝑧

(𝑘)
𝑙
,D𝑐

ℎ
]
]

+ 1

𝐾

𝐾∑︁
𝑘=1

log𝑝 (𝑦𝑡
𝑙
|𝑥𝑡
𝑙
, 𝑧

(𝑘)
𝑙

) − KL

[
𝑞(𝑧𝑙 |D𝑐

𝑙
,D𝑡

𝑙
)∥𝑝 (𝑧𝑙 |D𝑐

𝑙
)
]

where the latent variables 𝑧
(𝑘)
𝑙

and 𝑧
(𝑠)
ℎ

are sampled by𝑞𝜙𝑙 (𝑧𝑙 |D
𝑐
𝑙
)

and 𝑞𝜙ℎ (𝑧ℎ |𝑧
(𝑘)
𝑙
,D𝑐

ℎ
) respectively. This standard MC sampling

method requires nested sampling. For data sets with multiple fi-

delity levels, it is computationally challenging.

An alternative way is to use ancestral sampling [35] (denoted by

MF-HNP(AS)) for scalable training and write the estimation as:

L𝐴𝑆 =
1

𝑆

𝑆∑︁
𝑠=1

[
log𝑝 (𝑦𝑡

ℎ
|𝑥𝑡
ℎ
, 𝑧

(𝑠)
ℎ
, 𝑧

(𝑠)
𝑙

)

− KL[𝑞(𝑧ℎ |𝑧
(𝑠)
𝑙
,D𝑐

ℎ
,D𝑡

ℎ
))∥𝑝 (𝑧ℎ |𝑧

(𝑠)
𝑙
,D𝑐

ℎ
]
]

+ 1

𝐾

𝐾∑︁
𝑘=1

log 𝑝 (𝑦𝑡
𝑙
|𝑥𝑡
𝑙
, 𝑧

(𝑘)
𝑙

) − KL

[
𝑞(𝑧𝑙 |D𝑐

𝑙
,D𝑡

𝑙
)∥𝑝 (𝑧𝑙 |D𝑐

𝑙
)
]
(2)

We also design two different techniques to infer 𝑧ℎ using either

low-level mean of latent variables 𝜇𝑧𝑙 (denoted byMF-HNP(MEAN))

or both low-level mean and standard deviation (𝜇𝑧𝑙 , 𝜎2

𝑧𝑙
)(denoted

by MF-HNP(MEAN,STD)). The corresponding ELBOs are:

L𝜇 =
1

𝑆

𝑆∑︁
𝑠=1

log𝑝 (𝑦𝑡
ℎ
|𝑥𝑡
ℎ
, 𝑧

(𝑠)
ℎ
, 𝜇𝑧𝑙 )

− KL[𝑞(𝑧ℎ |𝜇𝑧𝑙 ,D𝑐
ℎ
,D𝑡

ℎ
))∥𝑝 (𝑧ℎ |𝜇𝑧𝑙 ,D𝑐

ℎ
]

+ 1

𝐾

𝐾∑︁
𝑘=1

log𝑝 (𝑦𝑡
𝑙
|𝑥𝑡
𝑙
, 𝑧

(𝑘)
𝑙

) − KL

[
𝑞(𝑧𝑙 |D𝑐

𝑙
,D𝑡

𝑙
)∥𝑝 (𝑧𝑙 |D𝑐

𝑙
)
]
(3)

L𝜇,𝜎 =
1

𝑆

𝑆∑︁
𝑠=1

log𝑝 (𝑦𝑡
ℎ
|𝑥𝑡
ℎ
, 𝑧

(𝑠)
ℎ
, 𝜇𝑧𝑙 , 𝜎𝑧𝑙 )

− KL[𝑞(𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D𝑐
ℎ
,D𝑡

ℎ
))∥𝑝 (𝑧ℎ |𝜇𝑧𝑙 , 𝜎𝑧𝑙 ,D𝑐

ℎ
]

+ 1

𝐾

𝐾∑︁
𝑘=1

log 𝑝 (𝑦𝑡
𝑙
|𝑥𝑡
𝑙
, 𝑧

(𝑘)
𝑙

) − KL

[
𝑞(𝑧𝑙 |D𝑐

𝑙
,D𝑡

𝑙
)∥𝑝 (𝑧𝑙 |D𝑐

𝑙
)
]
(4)

We include Equation 2, Equation 3, and Equation 4 as the training

loss functions for ablation study. The comparison of different NP

models including SF-NP, MF-NP, MF-HNP variants for high-fidelity

level inference and output generation is shown in Table 1.

5 EXPERIMENTS
We benchmark the performance of different methods on a multi-

fidelity modeling task for climate forecasting. Climate (temperature)

modeling is on a regular grid.

5.1 Experiment Setup.
For all experiments, we compare our proposed MF-HNP model with

both GP and NP baselines.

• GP baselines include the nonlinear autoregressive multi-

fidelity GP regressionmodel (NARGP) [25] and single-fidelity
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Gaussian Processes (SF-GP) which assumes that the data are

independent at each fidelity level.

• NP baselines include single-fidelity Neural Processes (SF-NP)

and multi-fidelity Neural Processes (MF-NP) [36].

• For our proposed MF-HNP model, we provide 3 variants to

approximate inference for ablation study, including inference

by low-level mean of latent variables (MF-HNP(MEAN)),

low-level mean and standard deviation of latent variables

(MF-HNP(MEAN,STD)), and ancestral sampling method (MF-

HNP(AS)). Details have been discussed in Section 4.3.

For NP models, we also consider two different context aggre-

gation methods discussed in Section 3.2, including mean context

aggregation and Bayesian context aggregation. Both are applied to

generate latent variables 𝑧 at each fidelity level. For NARGP andMF-

NP baseline, they only work for the data with nested data structure

based on their model architecture and assumption [25]. For MF-NP,

it requires both low-fidelity simulation output 𝑦𝑙 and high-fidelity

input 𝑥ℎ as model input. Therefore, we assume 𝑦𝑙 is known for the

validation and test set for MF-NP, which means MF-NP requires

more data compared with MF-HNPand other baselines.

We report the mean absolute error (MAE) for accuracy esti-

mation. For uncertainty estimation, we use mean negative log-

likelihood (NLL). For age-stratified Susceptible-Infectious-Recovered

(AS-SIR) experiment, we perform a log transformation on the num-

ber of infections in the output space to deal with the long-tailed

distribution. NLL for AS-SIR experiment is calculated in the log

space, while MAE is calculated in the original space. For climate

modeling experiment, both NLL and MAE are measured in the orig-

inal space. We calculate NLL based on the Gaussian distribution

determined by model outputs of mean and standard deviation, and

MAE between the mean predictions and the truth.

5.2 Climate Model for Temperature.
We test our method on the multi-fidelity climate dataset provided

by Hosking [11]. The dataset includes low-fidelity and high-fidelity

climate model temperature simulations over a region in Peru. The

left part of Figure 2 shows the region of interest.

Dataset. The low-fidelity data is generated by low-fidelity Global
Climate Model with spatial resolution 14×14 [16]. The high-fidelity

data is generated by high-fidelity Regional Climate Model [1] with

spatial resolution 87×87. The example is shown in Figure 2. Both in-

clude monthly data from 1980 to 2018 over the same region (latitude

range: (−7.5,−10.7), longitude range: (280.5, 283.7)).
The task is to use 6 month data as input to generate the next

6 month predictions as output. We randomly split 119 scenarios

for training candidate set, 50 scenarios for validation set, and 50

scenarios for the test set at both fidelity level. In the nested data

set case, we first randomly select 87 scenarios from the training

candidate set as the training set at low-fidelity level, then randomly

select 32 scenarios from them as the training set at high-fidelity level.

In the non-nested data set case, we randomly split 87 scenarios as

the training set at low-fidelity level and 32 scenarios as the training

set at high-fidelity level. The validation and test set are both at

high-fidelity level.

Performance Analysis. Table 2 compares the prediction per-

formance for 2 GP methods and 10 NP methods to predict the next

Figure 2: Left: Region of interest [3]. Upper Right: sample
from low-fidelity temperature model. Lower Right: sample
from high-fidelity temperature model.

6 month temperature based on the past 6 month temperature data.

The performance is reported in MAE and NLL. The results of this

task are consistent with what we found in SIR infection prediction

task. MF-HNP has significantly better performance compared with

either GP or NP baselines. But this time MF-HNP(MC)-BA is the most

accurate one with or without nested data structure. Considering

both MAE and NLL, we still recommend using MF-HNP(MC)-BA

and MF-HNP(MEAN)-BA.

Figure 3 is the visualization of predictions among the best MF-HNP
variant, GP and NP baselines on a randomly selected scenario in the

test set. To highlight the performance difference, we visualize the

residual between the predictions and the truth from 1 to 6 month

ahead predictions. Higher value means lower accuracy. It can be

found that MF-HNP outperforms all the baselines for each month

predictions.

6 CONCLUSION & LIMITATION
We propose Multi-Fidelity Hierarchical Neural Process (MF-HNP),
the first unified framework for scalable multi-fidelity surrogate

modeling in the neural processes family. Our model is more flexible

and scalable compared with existing multi-fidelity modeling ap-

proaches. Specifically, it no longer requires a nested data structure

for training and supports varying input and output dimensions at

different fidelity levels. Moreover, the latent variables introduce con-

ditional independence for different fidelity levels, which alleviates

the error propagation issue and improves the accuracy and uncer-

tainty estimation performance. We demonstrate the superiority of

our method on the real-world large-scale multi-fidelity application

for temperature forecasting from different climate models.

Regarding future work, it is natural to extend our multi-fidelity

Hierarchical Neural Process to active learning setup. Instead of

passively training the neural processes, we can proactively query

the simulator, gather training data, and incrementally improve the

surrogate model performance.
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Figure 3: MF-HNP vs. SF-NP vs. NARGP for 6 month ahead temperature prediction residual.

Table 2: Prediction performance comparison on climate data sets.

Method MAE (nested) ↓ NLL (nested) ↓ MAE (non-nested) ↓ NLL (non-nested) ↓
SF-GP 0.91 ± 0.365 2.288 ± 0.004 0.91 ± 0.365 2.288 ± 0.004

NARGP 0.91 ± 0.365 2.3 ± 0.006 × ×
SF-NP-MA 0.778 ± 0.01 1.489 ± 0.026 0.778 ± 0.01 1.489 ± 0.026

MF-NP-MA 0.902 ± 0.005 1.889 ± 0.012 × ×
MF-HNP(mean)-MA 0.765 ± 0.004 1.535 ± 0.059 0.788 ± 0.029 1.666 ± 0.174

MF-HNP(mean,std)-MA 0.773 ± 0.011 1.592 ± 0.057 0.768 ± 0.027 1.607 ± 0.089

MF-HNP(as)-MA 0.758 ± 0.024 1.578 ± 0.079 0.769 ± 0.02 1.594 ± 0.098

SF-NP-BA 0.751 ± 0.052 1.546 ± 0.133 0.751 ± 0.052 1.546 ± 0.133

MF-NP-BA 0.954 ± 0.019 1.909 ± 0.028 × ×
MF-HNP(mean)-BA 0.706 ± 0.049 1.549 ± 0.164 0.714 ± 0.027 1.58 ± 0.061

MF-HNP(mean,std)-BA 0.717 ± 0.045 1.606 ± 0.106 0.695 ± 0.03 1.548 ± 0.068

MF-HNP(as)-BA 0.678 ± 0.026 1.506 ± 0.027 0.68 ± 0.009 1.58 ± 0.012
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