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GaLeNet: Multimodal Learning for Disaster Prediction,
Management and Relief
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ABSTRACT
After a natural disaster, such as a hurricane, millions are left in need
of emergency assistance. To allocate resources optimally, human
planners need to accurately analyze data that can flow in large
volumes from several sources. This motivates the development
of multimodal machine learning frameworks that can integrate
multiple data sources and leverage them efficiently. To date, the
research community has mainly focused on unimodal reasoning
to provide granular assessments of the damage. Moreover, previ-
ous studies mostly rely on post-disaster images, which may take
several days to become available. In this work, we propose a multi-
modal framework (GaLeNet) for assessing the severity of damage
by complementing pre-disaster images with weather data and the
trajectory of the hurricane. Through extensive experiments on data
from two hurricanes, we demonstrate (i) the merits of multimodal
approaches compared to unimodal methods, and (ii) the effective-
ness of GaLeNet at fusing various modalities. Furthermore, we
show that GaLeNet can leverage pre-disaster images in the absence
of post-disaster images, preventing substantial delays in decision
making.

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural net-
work; • Applied computing→ Environmental sciences.

KEYWORDS
disaster management, hurricane, neural networks, multimodal rea-
soning, CLIP embeddings
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1 INTRODUCTION
In Haiti alone, Hurricane Matthew left an estimated 180,000 people
homeless and 1.4 million in need of emergency assistance [25].
When so many people are affected, it is critical to get an accurate
assessment of the location and severity of damage so that resources
can be allocated quickly to where they are needed most. The earlier
this picture of destruction can be assembled, the better a natural
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disaster can be managed. Disaster management and prediction
could become even more important in the future, as the frequency
of natural disasters might be increasing due to climate change [7].

One way to identify affected areas is to use post-disaster (“gray
skies”) images captured by satellite, drone, or plane in the immediate
aftermath of a disaster. However, there can be a delay of three
days before such images are available [29]. There is a multitude
of data that can be gathered before or during the event such as
pre-disaster (“blue skies”) images, weather features or dynamics,
and the trajectory of the hurricane. Are we able to reason over
such a diverse range of data modalities to predict which buildings
will be affected most before we have direct visual evidence of the
destruction?

Recently, several works have been published on applying ma-
chine learning to natural disaster prediction and management by
predicting the location and severity of damage to buildings [5, 13,
21, 26, 31–33]. However, these rely on direct visual evidence of the
damage provided by the post-disaster images. There are also an
increasing number of publications on multimodal machine learning,
but these use modalities that are naturally aligned (e.g. twitter im-
ages and text) and typically only provide “big picture” [3] insights
about the damage such as classifying image-text pairs from social
media for their informativeness, type of emergency and severity of
emergency [1].

In this work, we propose a multimodal framework to predict
the severity of the damage before images of the damage are avail-
able. The motivation is to allow for early triage and allocation
of resources. We also show how the accuracy of the framework
improves once the post-disaster images are collected. This could
allow authorities to adapt their relief program as new information
becomes available.

Contributions. To our knowledge, this work is the first to at-
tempt using multimodal machine learning to build a granular pic-
ture of damage severity without using post-disaster imaging. This
is achieved by: (i) aligning the data modalities via the longitude,
latitude and time of event, and (ii) supplementing pre-disaster im-
ages with weather data as well as information about the hurricane
trajectory through a novel featurization method. The framework
also allows for the assessment to be updated once post-disaster
imagery is available. Through the use of pre-trained image embed-
dings, we are able to efficiently train our framework on a limited
set of examples. We call our framework GaLeNet1.

2 RELATEDWORK
The need for rapid damage assessment following a natural disaster
has driven research into machine learning methods that can quickly
process data to assess the location and severity of damage [3].
Decision makers are often faced with the challenge of promptly

1Coined by conjoining the words “Gale” and “LeNet”.
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integrating several streams of information, reasoning over them,
and coming to an accurate assessment [10] which may evolve as
more data becomes available.

Multimodal learning is a natural solution to this problem; how-
ever, work in this area is still limited to understanding damage at
a high level [3]. Methods capable of making granular inferences
have so far been limited to unimodal image-based methods that are
mostly single task [5, 21, 26, 31–33] and sometimes multitask [13] -
all of which rely on the post-disaster image.

Despite the recent advances in deep learning, the applications
of these models for natural disaster prediction is still limited due to
the scarcity of training data. This is even more severe in a multi-
modal setting where several data sources have to be sourced and
merged. This has limited the application of deep learning, although
these methods are generally effective given enough data [4]. Here,
we overcome this problem by using pre-trained models as feature
extractors (for images) and handcrafted representations of the hur-
ricane trajectory and weather data leading up to the event. For
images, we observe that using multiple scales helps with the repre-
sentation, an observation which motivated [5].

For the hurricane trajectory, we present a novel featurization
method based on calculating the closest point along the hurricane
trajectory. The authors are also not aware of any building damage
prediction models that use the hurricane trajectory as an input
modality.

Aligning separate streams of data is one of the challenges of
multimodal learning [6]. In this work, we align data using the
geolocation (longitude and latitude) and timestamp of the disaster.

3 METHODS
3.1 Problem Statement & Scope
We consider both a proactive and a reactive scenario. In the reactive
case, the goal is to predict which buildings will be damaged, and
the severity of the damage, using direct visual evidence collected
through post-disaster satellite imaging. However, in the proactive
case, we are only allowed to use contextual information such as
pre-disaster imaging or weather data.

In this work, we limit the scope to include buildings in the vicin-
ity of hurricanes Matthew (2016) [27] and Michael (2018) [8]. We
focus on hurricanes as there is more contextual information (e.g.
hurricane trajectory or weather data) than is available for other
disasters such as forest fires, thus making the problem more com-
patible with multimodal learning.

We treat the problem as a classification task, where for each
building, we classify the damage into one of four levels of sever-
ity: (i) no damage, (ii) minor damage, (iii) major damage, and (iv)
destroyed. The labels and class definitions are taken from the xBD
dataset [12]. Other than selecting only examples related to wind
damage due to hurricanes, we used the original train, test, and hold
splits from the xView 2 challenge, throughout.

3.2 Data Modalities
The xBD dataset [12] was used as the foundation of our multimodal
dataset, as it contains labels for the severity of damage as well as
the geolocation and time of the disasters. We used these as anchor
points to align all of our different modalities: (i) pre-disaster satellite

images, (ii) post-disaster satellite images, (iii) weather data, and (iv)
the hurricane trajectory.

After filtering the original xBD dataset [12] for hurricanes and
wind damage, 36,625, 9,283, and 12,791 building were identified for
training, validation and testing. The dataset is somewhat imbal-
anced with 48% of the labels being no damage and the remaining
52% consisting of the other three levels of damage (33% minor
damage, 11% major damage, and 8% destroyed).

3.2.1 Image Data.

Source. The images from the xBD dataset [12]were pre-processed
by taking the centroid of each building polygon and then taking a
centered crop, as opposed to using the full satellite image.

Representation. We tried both uniscale andmultiscale approaches
for visual representation. A zoomed out view (denoted by Scale-1x)
was created by scaling the image by 𝑠≈11/

√
𝐴 (where 𝐴 is the area

of the building polygon) in each dimension before performing a
crop, centered around the building center, of 224×224 pixels. Addi-
tional crops were performed by increasing the scale to 4𝑠 (Scale-4x),
16𝑠 (Scale-16x), and 32𝑠 (Scale-32x) - progressively zooming in on
the building.

Visual features were extracted using: (i) a pre-trained CNN base-
line, (ii) the CLIP [24] visual branch, and (iii) a pre-trained U-Net
on satellite images to segment buildings by type (houses, building,
and sheds/garages) [20]. The CNN baseline consists of five convo-
lutional blocks followed by two fully-connected layers. We trained
this model on the cropped images from the xBD training set for the
damage classification task. We explored four different versions of
CLIP [24] for extracting visual features: (i) CLIP ViT-B/32 (ii) CLIP
ViT-B/16 (iii) CLIP ViT-L/14 and (iv) CLIP ViT-L/14@336px. For the
U-Net, we used the pre-trained weights available from [20].

3.2.2 Hurricane Trajectory.

Source. The trajectory of the two hurricanes were extracted
from reports published by the NOAA [8, 27]. The trajectory is a
series of longitude and latitude coordinates with an associated time,
wind speed and central pressure.

Representation. To featurize the hurricane trajectory, we used
the haversine formula to compute the shortest distance between
each building and the trajectory. This shortest distance (in km) and
the wind speed and pressure at this point in the trajectory were
extracted. In case of ties (i.e. multiple points on the trajectory that
had the same distance to the building), the maximum wind speed
and pressure were used. We also experimented with more complex
multiscale and multipoint schemes as well as distance-weighted
features, but these offered no benefit.

3.2.3 Weather Data.

Source. The weather data were extracted from OpenWeather2
and consists of many factors including, but not limited to, the
temperature, wind speed and direction, precipitation, humidity,
pressure, and visibility. We collected daily weather data for seven
days preceding each hurricane, with eight time points per day.

2Data was collected using the OpenWeather API https://openweathermap.org/

2
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Representation. The best representation of the weather data
was simply the average of each weather feature across all time
points.We also tried using off-the-shelf feature engineering libraries
for time series, such as TSFresh [11] and Catch22 [19], but these
offered limited benefit and resulted in a substantial increase in the
number of input features and model parameters, making it prone
to overfitting.
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Figure 1: Schematic diagram of our proposed framework

3.3 Metrics
The following metrics were used for evaluation: (i) Area Under the
Precision Recall Curve (PR AUC), (ii) Area Under the ROC Curve
(ROC AUC), and (iii) Balanced Accuracy (Bal. Acc.) which is the
unweighted average of recall obtained on each class. Since we are
dealing with an imbalanced dataset, we use macro averaging to
obtain the PR AUC and ROC AUC curves.

4 EXPERIMENTS
To study the contribution of each modality, we conduct two sets of
experiments. First, we evaluate and compare the representations of
each modality separately on damage classification. Then, using the
best representation of each modality, we assess the effectiveness
of our multimodal framework for both the proactive and reactive
scenarios.

4.1 Single Modalities
To evaluate and compare the different modalities and their repre-
sentations, we follow the common practice [16] and train a linear
logistic regression (LogReg) model for damage severity classifica-
tion. We train LogReg using the L-BFGS [18] solver. We choose the
best value for the inverse regularization strength 𝐶 by running a
grid search over 𝐶∈10[−3,3] on the validation data.

4.2 Multiple Modalities
We assess the effectiveness of our multimodal framework for proac-
tive and reactive scenarios by comparing it against two models:
(i) LogReg, and (ii) Concat-MLP. For LogReg, we use the setup
described in 4.1. In the reactive case, we use the hurricane trajec-
tory, weather data, and the post-disaster satellite images. In the
proactive case, however, we use pre-disaster images instead of the
post-disaster images.

Concat-MLP. We begin by concatenating the best representa-
tions of each modality, namely, the embeddings extracted from
CLIP ViT-L/14@336px corresponding to the four different image
scales, denoted by {𝐸𝑖1, 𝐸𝑖2, 𝐸𝑖3, 𝐸𝑖4}, the weather embedding 𝐸𝑤 ,
and the trajectory embedding 𝐸𝑡 . Let 𝐸𝑎𝑙𝑙=[𝐸𝑖1, 𝐸𝑖2, 𝐸𝑖3, 𝐸𝑖4, 𝐸𝑤 , 𝐸𝑡 ]
be the concatenated representation. Next, 𝐸𝑎𝑙𝑙 is passed through a
network of two fully-connected layers. The first layer contains 128
nodes, followed by 32 nodes in the second layer, and both layers
use ReLU [2] activation. The output of the network is fed into a
softmax layer for classification.

GaLeNet. We observe that an early-stage naïve concatenation of
feature embeddings, extracted from different modalities, can lead to
difficulties in training due to: (i) different modalities having variable
rates of learning [30], and (ii) modalities containing different levels
of information for the task at hand. To combat these problems, we
use late-fusion; a common paradigm in which modality-specific
latent representations are learned to aid the process of fusion [14,
23, 34].

To this end, our proposed framework (Figure 1) jointly trains mul-
tiple modality-specific encoders, whose intermediate activations
are then concatenated. Each encoder follows a similar sequence of
computations; linear projection → batch normalization → ReLU
→ dropout. The CLIP embeddings {𝐸𝑖1, 𝐸𝑖2, 𝐸𝑖3, 𝐸𝑖4} are passed
through their corresponding encoders to yield {𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3, 𝐴𝑖4} ∈
R56. Similarly, the encoders corresponding to 𝐸𝑤 and 𝐸𝑡 produce
𝐴𝑤 ∈ R16 and, 𝐴𝑡 ∈ R3 respectively. Next, these intermediate acti-
vations are concatenated, yielding 𝐴𝑎𝑙𝑙 ∈ R243, and passed through
a fusion encoder before finally being fed into a classification layer.
Motivated by [28], each of {𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3, 𝐴𝑖4} is additionally fed
into its respective classification layer to accelerate the optimization
process.

Combining all the losses computed from the classification layers,
the overall optimization objective becomes

𝐿 = argmin
𝜃

4∑︁
𝑗=1

𝐿𝑖 𝑗 + 𝐿𝑎𝑙𝑙 (1)

where𝐿𝑖 𝑗 corresponds to the losses computed from {𝐴𝑖1, 𝐴𝑖2, 𝐴𝑖3, 𝐴𝑖4},
𝐿𝑎𝑙𝑙 corresponds to the loss computed from 𝐴𝑎𝑙𝑙 , and 𝜃 is the set of
learnable parameters.

TrainingConfiguration. To ensure consistency betweenConcat-
MLP and GaLeNet, we employ Focal Loss [17] due to its superior
performance on imbalanced datasets. We use Adam optimizer [15],
initialized with a learning rate of 1𝑒−4. To combat overfitting, we
use Early Stopping [9] with the patience set to 5. Finally, we run
each model 5 times with random initialization of weights and report
the averaged metrics.

3
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5 RESULTS
5.1 Single Modalities
It took some optimization to find the best representation of the
image data. Table 1 shows the performance of the different feature
extraction approaches at a fixed scale (Scale-32x). In general, the
CLIP representation outperformed both the CNN and the U-Net
approaches. This is interesting given that CLIP has not been ex-
plicitly trained to detect buildings or damage from satellite images.
But, it does have the benefit of being exposed to a much larger
variety and number of images during pre-training. We also observe
that the performance increases from older to newer versions of
CLIP (from top to bottom), which is consistent with the original
generalization trend of CLIP models shown by [22]. The largest
CLIP model (ViT-L/14@336px) performed best and was used for all
other experiments that we report.

Table 1: Comparison of various feature extractors

Representation Bal. Acc. PR AUC ROC AUC

CNN 0.5091 0.5711 0.8310
U-Net 0.3574 0.3970 0.6976

CLIP ViT-B/32 0.5352 0.5925 0.8300
CLIP ViT-B/16 0.5499 0.6023 0.8296
CLIP ViT-L/14 0.5564 0.6107 0.8404

CLIP ViT-L/14@336px 0.5684 0.6183 0.8443

Table 2 presents the performancemetrics of CLIP ViT-L/14@336px
embeddings obtained using various cropping strategies on pre-
and post-disaster satellite images. Interestingly, we notice a dif-
ference between the pre- and post-disaster representations. In the
pre-disaster case, the performance improves progressively as we
“zoom out” from the building. However, in the post-disaster case
the opposite is true and “zooming in” to the building seems to boost
performance. We reason that this is because in the post-disaster
case the direct visual evidence of the building damage is important
to assessing damage severity. However, in the pre-disaster case this
is not available, so the model relies on inferring potential damage
using the contextual information surrounding the building. This
might include whether it is sheltered by other buildings or forests,
or whether it is close to loose structures that could get uplifted and
blown into the building.

In both cases, the highest performance is achieved by concatenat-
ing all the different scales, implying that both pre- and post-disaster
damage assessment benefit from combining information obtained
at multiple scales.

Table 3 (rows 1-4) show the performance of each modality in
the unimodal setting using LogReg as the model. The ROC AUC
performance shows that on their own, each modality provides some
utility for assessing building damage severity, even for proactive
modalities that do have access to direct visual evidence of the
damage. As expected, the post-disaster image modality provides a
significant boost in performance over the proactive modalities.

Figure 2(a-d) shows ROC curves for the unimodal baselines. It is
evident that for the proactive modalities (a-c), there is a noticeable
drop in performance for the “Major Damage” class, however this is

not the case for the post-disaster image modality. When studying
the class predictions of the model, it is evident that the proactive
models tend to confuse “Major Damage” with “Destroyed”. In the
post-disaster case, the model becomes much better at distinguishing
the different levels of damage severity as it has direct visual evidence
of the damage.

5.2 Multiple Modalities
Table 3 (rows 5-10) provides a comparison of our proposed frame-
work (GaLeNet) to the LogReg and Concat-MLP baselines for both
the proactive and reactive scenarios.

Firstly, we observe that the LogReg is able to benefit from using
all input modalities, as the multimodal LogReg outperforms all of
the unimodal LogReg models in both the proactive and reactive
cases. This implies that the different modalities have some com-
plimentary information for inferring the damage severity, even if
provided with post-disaster images.

Secondly, we note that a naïve neural network approach (Concat-
MLP) does not offer much benefit over the LogReg, as it does not
consistently outperform the LogReg in either the proactive or reac-
tive cases.

GaLeNet outperforms both fusion baselines across all metrics
for both scenarios. Focusing on the Proactive use-case, GaLeNet
achieves an increase of ∼14% in Bal. Acc. over LogReg. In the reac-
tive use case, GaLeNet achieves similar performance boost in Bal.
Acc.

Qualitatively, GaLeNet demonstrates its capability to correctly
identify the severity of damage across buildings of multiple sizes
(Figures 3 and 4). This can be attributed to the availability of visual
features extracted at different image scales and the normalization
of the image scale.

Finally, it is worth noting that GaLeNet outperforms its closest
architectural neighbor, Concat-MLP, across all metrics while hav-
ing only 189K parameters (52.75% fewer parameters compared to
Concat-MLP). This further attests to the effectiveness of GaLeNet’s
compact architectural design.

6 LIMITATIONS & FUTUREWORK
During the process of this work, we found several limitations which
open up impactful avenues of future work:

• We experimented with additional modalities such as ele-
vation data and twitter data, and while these gave above
chance performance in an unimodal setting, they did not
offer any benefit in a multimodal setting. This could be due
to the limited size of our dataset, we had to use a relatively
shallow model which was unable to reason across these
additional modalities. In addition, the twitter dataset was
relatively sparse, and the resultant model suffered from
“modality dropout”. We feel that a solution to this is essen-
tial to real-world application of such a model.

• Several attempts were made to improve the representation
of the weather data and the hurricane trajectory data, how-
ever, it was found that only relatively simple featurizations
of each offered the best performance. We attribute this to
the granularity (in terms of longitude and latitude) of the
data and to the overall size of the dataset and the inability

4
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Table 2: Comparison of various cropping strategies and performance for pre- and post-disaster images.

Pre-disaster Post-disaster
Image Scale Bal. Acc. PR AUC ROC AUC Bal. Acc. PR AUC ROC AUC

Scale-1x 0.4963 0.5329 0.7878 0.4929 0.5598 0.8129
Scale-4x 0.4835 0.5191 0.7797 0.5147 0.5804 0.8229
Scale-16x 0.4762 0.5201 0.7799 0.5381 0.6083 0.8386
Scale-32x 0.4588 0.4944 0.7620 0.5684 0.6183 0.8443

All Scales 0.4931 0.5439 0.7962 0.5707 0.6430 0.8570

Table 3: Comparison of unimodal and multimodal baselines with GaLeNet, for the modalities: weather data (W), hurricane
trajectory (T), pre-disaster image (Pre), and post-disaster image (Post).

Model Features Scenario Bal. Acc. PR AUC ROC AUC

LogReg W Proactive 0.5238 0.4369 0.7122
LogReg T Proactive 0.4348 0.5145 0.7508
LogReg Pre Proactive 0.4931 0.5439 0.7962
LogReg Post Reactive 0.5707 0.6430 0.8570

LogReg W + T + Pre Proactive 0.5110 0.5533 0.8090
Concat-MLP W + T + Pre Proactive 0.6357 0.5518 0.8072

GaLeNet W + T + Pre Proactive 0.6495 0.5645 0.8140

LogReg W + T + Post Reactive 0.5773 0.6472 0.8631
Concat-MLP W + T + Post Reactive 0.6798 0.6556 0.8648

GaLeNet W + T + Post Reactive 0.6875 0.6680 0.8732

of the model to learn a more nuanced representation of the
data. The dataset size also prevented us experimenting with
different co-learning strategies.

• Following error analysis, we realized that our framework
struggles to identify damage on buildings that are circular.
This can be attributed to their rare occurrence in the real
world, and consequently in the dataset. Future work can,
therefore, explore extending existing datasets to cover edge
cases.

• The dataset only contained two hurricanes, so we were
unable to test generalization to new natural disasters. Col-
lecting data and testing across more natural disasters is an
essential next step (in our roadmap) before these models
can be utilized in the real world.

7 CONCLUSION
We proposed a multimodal framework, GaLeNet, that is capable
of predicting the severity of damage to buildings after a hurricane
even if it does not have access to direct visual evidence of the
damage. Moreover, when such information is available, GaLeNet is
able to use it to increase the accuracy of its predictions. Through
extensive evaluation with data from two hurricanes, we show the
effectiveness of GaLeNet by comparing it against multiple unimodal
and multimodal baselines.

We believe that such a framework could provide crucial early
insights and intelligence on the natural disaster before the true
damage is known. Thus, it could help allocate resources for disaster

relief where they matter most, and update this allocation as more
data becomes available.

In addition, it is possible that proactive data such as weather pre-
dictions, predicted hurricane trajectories and “blue skies” imaging
could provide useful insights about the risk of particular buildings
to damage in the event of a natural disaster. Such actionable insights
could be used to strengthen our defenses against disasters before
they occur.

As climate change and its effects become more pronounced, the
need to address its challenges has never been more pressing. We
hope that GaLeNet, despite its limitations, can ignite future research
and development in this direction.
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(a) Ground truth - Hurricane Matthew (b) GaLeNet proactive - Hurricane Matthew

(c) Ground truth - Hurricane Michael (d) GaLeNet proactive - Hurricane Michael

Figure 3: Visual comparison between ground truth labels and GaLeNet predictions for the proactive scenario. Images from
hurricanes Matthew and Michael are shown in (a, b) and (c, d), respectively. “No Damage“, “Minor Damage”, “Major Damage”
and “Destroyed” are shown in green, wheat, orange and red, respectively. Correct predictions are filled in the relevant colour,
whereas misclassified predictions are outlined in the colour of the predicted label. Note that the building masks are taken from
the xBD dataset and not predicted by the model, they are used only for visualization purposes.
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Figure 4: Visual comparison between ground truth labels and GaLeNet predictions for the reactive scenario. Images from
hurricanes Matthew and Michael are shown in (a, b) and (c, d), respectively. “No Damage“, “Minor Damage”, “Major Damage”
and “Destroyed” are shown in green, wheat, orange and red, respectively. Correct predictions are filled in the relevant colour,
whereas misclassified predictions are outlined in the colour of the predicted label. Note that the building masks are taken from
the xBD dataset and not predicted by the model, they are used only for visualization purposes.
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