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Projections of surface runoff at large river watersheds is critical to inform water resources planner and policymakers. Although, Earth
System Models (ESMs) provide runoff projections over the world, there is a large gap in projections of runoff over stakeholder-relevant
spatiotemporal resolutions. In contrast, hydrological models provide runoffs at high spatial resolution but do not have the ability to
incorporate feedbacks from atmospheric circulations for long term predictions. This paper assesses the credibility of the state-of-the-art
Earth System Models to understand and project large river watershed runoffs. The results show that, there is wide variability due to
forcing, model response, or internal variability among models at each watershed basins which amplifies the uncertainties of projections.
However, despite gaps in process understanding, as well as intrinsic variability, the projected changes in runoff at regional and seasonal
scales are significant enough to require re-evaluation of design curves, planning scenarios, and operations practices.
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1 INTRODUCTION

According to World Economic Forum report, for tackling all major problems around the world, we must start focusing
on water first. It is evident that world temperature is rising [2] and in IPCCWorking Group I Report (Chapter 8), [24] it is
stated that “Without large-scale reduction in greenhouse gas emissions, global warming is projected to cause substantial
changes in the water cycle at both global and regional scales (high confidence).” It is also mentioned that, “Water cycle
variability and extremes are projected to increase faster than average changes in most regions of the world and under
all emissions scenarios (high confidence)”. Due to this shift in hydroclimate, freshwater availability at local or global
scales will be at stake [23]. Securing fresh water supply is one of the main agendas in the Sustainable Development
Goals [10]. Moreover, the latest IPCC report (Working group I, chapter 11) [24] mentioned that “Significant trends in
peak streamflow have been observed in some regions over the past decades (high confidence).” Thus, analyzing the
effect of climate change on runoff, which is an integral part of the hydrologic cycle, is especially needed.

Projections from the climate models need to be credible for adaptation and decision-making [11, 15] and in a former
paper where the loopholes in climate science were discussed it showed, how most climate models are not yet generating
results at a resolution which can help in decision-making [22]. This study, provides the framework for rigorous evalua-
tion of the performance of earth system model runoff with respect to reanalysis models as well as gridded observations
at the major rivers around the world. The primary research questions that this study focuses on are: 1) How well runoff
has been captured in state-of-the-art earth system models in comparison to Runoff from Reanalysis or Observed Data
in Historical period at the larger river watersheds, 2) How will the hydrologically significant statistical parameters
(long term mean, variance, trends) will be altered in future at these rivers, and 3) How well CMIP6 Models performs in
terms of North American Rivers for annual scale projections.

The recent generation of ESMs are the Coupled Model Intercomparison Project version 6 (CMIP6) [6] which is
developed by several climate institutions around the world with solid efforts of 5-6 years. The latest generation models
give us the opportunity to analyze hydroclimate responses with improved modelling efforts [4]. Although climate
models are doing relatively better job at predicting some variables such as temperature, but there are outstanding gaps
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in predictive understanding of other hydrologic variables such as runoff. This study discusses the hypothesis with
case studies that how better predicted variables from ESMs, such as oceanic and atmospheric temperature, may have
information content that can be leveraged with statistical and machine learning tools to improve predictions of less
well predicted variables from ESMs, such as runoff and streamflow.

2 CURRENT STATE OF THE SCIENCE

With the advancement of earth system models (both in terms of resolutions and process understanding) many studies
have been conducted with runoff simulations at global or continental scales [3, 16]. Extensive studies have been done
with previous generations of CMIP models at different river basins of the world [1, 18]. But very few studies have been
published with the performance evaluation of CMIP6 model runoff projections at an extensive scale. This study will
present a global perspective of model performance of 30 river basins.

2.1 Dataset and Study Area

For this study, the largest 30 rivers are selected. The rivers are considered based on their discharge. In figure 1, all the
river basins used in this study are shown. In the river watersheds map, rivers are colored according to the discharges
they carry. The rivers with lower numbers and darker colors carry higher discharge. This image also shows the trends
and variance in long term runoff based on observation data.

Fig. 1. Major River Basins of the World with Discharge (𝑚3/𝑠) .

Monthly Runoff data are collected from CMIP6 models, Reanalysis data and observed dataset. All available models
with runoff projections were used in this study, discarding the models with missing data. For historical projections, 25
models were available, whereas for future projections, 21 models were found. In Table 1, the list of models used for
each case and the name of their modelling group and resolutions are listed. CMIP6 models use shared socioeconomic
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Table 1. IPCC CMIP6 Earth System Models with name of modeling center (of group) and horizontal grid resolution used in this study

No Modeling center (or group) Model name Grid size
(lat x lon)

Hist-
orical

SSP
370

1 Australian Research Council Centre of Excellence for
Climate System Science

ACCESS-ESM1-
5

145 ×192 ✓ ✓

2 Alfred Wegener Institute, Helmholtz Centre for Polar and
Marine Research

AWI-ESM-1-1-
LR

96 x 192 ✓

3 Beijing Climate Center BCC-CSM2-MR 160 x 320 ✓ ✓
4 Chinese Academy of Meteorological Sciences CAMS-CSM1-0 160 x 320 ✓ ✓
5 Canadian Centre for Climate Modelling and Analysis CanESM5 64 x 128 ✓ ✓
6 Chinese Academy of Sciences CAS 128 x 256 ✓
7 National Center for Atmospheric Research CESM2 192 x 288 ✓ ✓
8 Fondazione Centro Euro-Mediterraneo sui Cambiamenti

Climatici
CMCC-CM2-
SR5

192 x 288 ✓ ✓

9 Centre National de Recherches Meteorologiques CNRM-CM6-1 128 x 256 ✓
10 E3SM-Project E3SM-1-0 180 x 360 ✓
11 EC-Earth-Consortium EC-Earth3 256 x 512 ✓ ✓
12 Chinese Academy of Sciences FGOALS-g3 80 x 180 ✓ ✓
13 National Oceanic and Atmospheric Administration GFDL-ESM4 180 x 288 ✓ ✓
14 Goddard Institute for Space Studies GISS-E2-1-G 90 x 144 ✓ ✓
15 Met Office Hadley Centre HadGEM3-

GC31-LL
144 x 192 ✓

16 Institute for Numerical Mathematics INM-CM5-0 120 x 180 ✓
17 Institut Pierre Simon Laplace IPSL-CM6A-LR 143 x 144 ✓
18 Korea Institute of Ocean Science and Technology, KIOST-ESM 96 x 192 ✓
19 National Institute of Meteorological Sciences KACE-1-0-G 144 x 192 ✓
20 Japan Agency for Marine-Earth Science and Technology MIROC-ES2L 128 x 256 ✓ ✓
21 Max Planck Institute for Meteorology MPI-ESM1-2-LR 96 x 192 ✓ ✓
22 Meteorological Research Institute MRI-ESM2-0 160 x 320 ✓ ✓
23 NorESM Climate modeling Consortium NorESM2-LM 96 x 144 ✓ ✓
24 Seoul National University SAM0-UNICON 192 x 288 ✓
25 Research Center for Environmental Changes TaiESM1 192 x 288 ✓ ✓
26 Met Office Hadley Centre UKESM1-0-LL 144 x 192 ✓ ✓
27 Department of Geosciences, University of Arizona MCM-UA-1-0 80 x 96 ✓ ✓

pathways (SSPs), which are realistic representations of socioeconomic global changes of future world [21]. In this study,
SSP 370 situation has been considered as this signifies a forcing level familiar to several unmitigated SSP baselines [13]
and this corresponds to a 7𝑤/𝑚2 radiative forcing [6] during the end of the century. All the CMIP6 models had data
from 1860 to 2014. For reanalysis dataset, runoff datasets are extracted from the National Oceanic and Atmospheric
Administration (NOAA) [14] and European Union’s Earth Observation Program (ERA5) [19]. Reanalysis datasets are
created from sparsely available observation data combined with data from climate models or remote sensing. Both
reanalysis datasets are gridded and the grid size (latitude x longitude) for NOAA and ERA5 Runoff model is 94 x 192
and 1800 x 3600 respectively. Runoff from NOAA and ERA5 climate reanalysis datasets were available from 1948 to
2022 and 1950 to 2021 respectively. For grid-based observations of monthly runoff data, GRUN [9] dataset has been
used in this study, which is available from 1902 to 2014 with a grid size of 360 x 720. These datasets were gridded using
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optimal interpolation. Preprocessing was performed for aligning the coordinates of all models and datasets. To maintain
corresponding time frame, 1960-2010 was considered as the historical study period. For future runoff projections,
runoff data for the period of 2017-2098 was selected. Also, all datasets were converted into mm/day unit for ease of
comparison. CMIP6 models datasets are available at World Climate Research Program Website hosted by Lawrence
Berkeley National Laboratory (https://esgf-node.llnl.gov/search/cmip6/). NOAA reanalysis datasets are available at
Physical Science Laboratory Website (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.surfaceflux.html).
ERA5 and GRUN runoff data can be obtained from ECMWF Website (https://climate.copernicus.eu/climate-reanalysis)
and here (https://doi.org/10.6084/m9.figshare.9228176) respectively. The spatial information of the rivers was extracted
from the Global Runoff Data Centre (GRDC) which can be downloaded from their website (https://www.bafg.de/GRDC/
EN/02_srvcs/22_gslrs/gislayers_node.html).

2.2 Model Performance Evaluation

In this study, multi model ensemble (MME) statistical performance has been assessed as it encapsulates a collection of
probable future scenarios, and the central tendency of measurement (mean or median) is the best possible representation
of future in this case [15]. Long term (50 years; 1960-2010) mean, variance and trends of runoffs in the river basins are
estimated from the MME of CMIP6 models, and they were compared with observations and reanalysis datasets. In figure
??, the difference of MME with observations and reanalysis datasets are shown with the estimation of uncertainties in
each river basin.

Fig. 2. Difference in long term mean and variances of CMIP6 MME with observation-based (left) and reanalysis-based (right) runoffs.

In 43% of the rivers, the difference between long term mean of CMIP6 MME and observations were less than 10%.
For 83% of the rivers, this difference was less than 30%. Whereas in terms of reanalysis datasets, 60% of the rivers were
showing less than 30% difference with CMIP6 MME. Reanalysis datasets (especially reanalysis data from NOAA) are
showing high difference with observed datasets as well in high latitudes. For future studies, reanalysis datasets with
higher spatial resolutions can be used in the study for better comparison. In terms of variance, in the majority of the
rivers, CMIP6 MME has less than 25difference with observation and reanalysis based runoffs. Also, CMIP6 MME agrees
more with reanalysis based runoffs in terms of variance than observation based runoffs.

Furthermore, uncertainties have been estimated here in terms of two aspects. Firstly, in fig 3, variability in model
projections are shown which has been distinguished with colors. This is widely used for ESM uncertainty measurements.
Secondly, variability of MME is shown with different shading options. From this analysis, it can be seen that there are
high uncertainties in runoff projections at rivers with higher discharges in terms of variability in model projections. For
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future work, uncertainties can be measured at a more data driven perspective, such as with KL distance or Bhattacharya
distance.

Fig. 3. Uncertainty in CMIP6 Runoff Projections of Major Rivers in terms of Variability of CMIP6 MME and Variability in Model
Projections. Variability of MME lower than 0.002 mm/day,0.005 mm/day and 0.02 mm/day are considered as low, moderate and high
uncertainty respectively. Variability in Model projection lower than 1 mm/day,2.5 mm/day and 4.5 mm/day are considered as low,
moderate and high uncertainty respectively.

In terms of trend analysis, in 43% of the rivers, CMIP6 MME agree with observed and reanalysis-based runoffs. While
assessing future projections of runoffs from CMIP6 MME, it was observed that around 75% of the river basins show an
increase in their long term mean in future years. In figure 4, trends of river basin runoffs in and future time frames have
been compared. For future runoffs, trends in CMIP6 MMEs have been shown. Here, a higher slope of increasing trend is
observed in 60% of the river basins in the future.

Fig. 4. Long term Trends in Runoff of Major River basin in the Future. Trends higher and lower than ±0.0005 mm/day are considered
increasing or deceasing trends. Uncertainty is measured depending on how CMIP6 MME performs with respect to observed and
reanalysis datasets in historical timescale.
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However, for historical projections as well, trends in runoffs from 40% of the river basin were showing higher trends
in CMIP6 models than observation-based runoffs. Here, uncertainty is measured depending on how CMIP6 MME
performs with respect to observed and reanalysis datasets in historical timescale. So, this factor should be considered
before jumping into conclusions that, in the future, runoff will increase. For further investigations, major rivers from
North America continents are selected. In figure 5, mean annual runoff (1960-2010) and inter-annular variability in
CMIP6 MME of 7 major rivers (Mississippi, Colorado, Yukon, Saint Lawrence, Mackenzie, Nelson and Churchill) have
been presented with observation and reanalysis-based runoffs.

Fig. 5. Mean Annual Runoff from CMIP6 MME, Observations and Reanalysis based Runoffs in Major River Basins in North America.
Red and blue shaded zones are showing spread of models from CMIP6 and reanalysis datasets.

For all the rivers, it was observed that the inter-annular variability was not clearly articulated in the CMIP6 MME.
Another thing to note here is that both CMIP6 models and Reanalysis models are showing a wide spread for the river
basins in higher latitudes. Lastly, results from different performance metrics such as mean squared error, Nash-Sutcliffe
Efficiency and Kling-Gupta Efficiency showed that, runoff from CMIP6 MMEs are not credible enough to use for
hydrologic and water resources management purposes at annual or shorter time scales.

3 FUTUREWORKS INTEGRATING HYDROCLIMATE SCIENCEWITH MACHINE LEARNING

From this study it was evident that although CMIP6 MME performs well in terms of long term statistics but for short
term projections at annual or seasonal timescale, it does not have a satisfactory performance yet at individual river
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basins. Again, there is wide variability among models, which further increases the uncertainties of projections. This
solidifies the hypothesis that climate models are not yet better at predictive understanding of hydrologic variables.

In a recent white paper [7] it was mentioned that it is highly challenging to incorporate hydrologic and hydrocli-
mate processes and their internal interactions in earth system models because they operate in highly heterogeneous
environments. However, with data driven models these problems can be tackled. Studies show many variables from
CMIP6 models performs well in terms of projections. Using such variables, other hydrologically important variables
such as projection of runoff can be improved with help of machine learning and artificial intelligence. Although this
hypothesis is examined very often, in most cases it is not explicitly stated. For example, several studies showed how
predictive knowledge can be generated using climate data with theory guided data science [8, 12]. Another widely used
example of this hypothesis is downscaling of climate variables. This method tries to obtain a high resolution mapping
of global scale earth system model simulation at scales important for stakeholders. Studies also showed how physics
based approaches can be used to either constraint uncertainties [20] or project climate variables.

In spite of being the buzzing hypothesis in the climate community, very few studies used climate variables either
from observation or earth system models to examined this above-mentioned hypothesis. A recent study, [17], showed
climate variable that are well predicted from ESMs, such as sea surface or atmospheric temperature, has information
content that can be integrated with statistical and machine learning tools to increase predictive understanding of less
well predicted variables from ESMs, such as runoff and streamflow. They explored how using information outside
the typical ENSO region integrated with AI helps in prediction of hydrology. Another study [5] used observation of
precipitation extreme for estimating the dependence of extremes on covariates which helps in identifying the causal
drivers and ultimately inform predictive modeling. So for future works, along with understanding the physics and
biogeochemistry for the earth system models, we can quantify informed risk and improve our predictive understanding
by integrating Artificial intelligence with earth system model projections [7].

4 CONCLUSION

Surface runoff is an integral component of hydrologic cycle and projections of runoff in large water basins are extremely
important for ensuring food and water security as well as water resources management. In this study, we compared the
performance of surface runoff from earth system models with observation and reanalysis-based runoffs in major river
basins of the world. Although, multimodel ensemble performed well in terms of predicting long term means, projections
of variations or trends were not satisfactory. So for better future runoff projections, along with incorporating complex
hydrological parameters in ESMs, data driven approached also can be implemented.
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