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This paper develops physics-informed neural networks (PINNs) to estimate water depths from remote sensing of the nearshore. The model 

integrates the knowledge of water wave mechanics and fully connected neural networks to determine the water depth and reconstruct the 

surface wave field. Two test cases were used to assess the performance of PINNs for solving depth inversion problems, including linear 

waves over a three-dimensional (3D) barred beach and nonlinear waves over an alongshore uniform beach. The results show that the 

developed PINN model is able to estimate the 3D nearshore bathymetry with sufficient accuracy. It is found that one of the advantages of 

using PINNs to solve bathymetry inversion problems is that the nonlinear dispersion relation of water waves can be embedded in the 

model. Thus, the effect of amplitude dispersion on depth inversion and wave field prediction can be taken into account. Overall, our results 

show that the inverse PINN model is a promising tool for estimating nearshore bathymetry based on observations from various remote 

sensing platforms.  
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1 INTRODUCTION 

Due to increasing coastal utilization and sea level rise, accurate information about the nearshore bathymetry is essential 

for designing and operating many coastal projects, such as flood protection and coastal zone management. In general, it 

can be costly to collect nearshore bathymetric data using in-situ methods, such as vessel-based and bottom contact survey 

techniques, which become impartial due to the hazardous surf zone conditions during storms. Even when the in-situ 

measurements are available, the spatial undersampling may not well resolve complex bathymetric features, and temporal 

undersampling may also poorly capture beach changes in the highly dynamic environment. Therefore, it would be desirable 

to monitor the nearshore regions using remote sensing techniques, which can have a broader spatial and temporal coverage 

than the traditional in-situ surveying methods do [1]. 

In the past several decades, many studies have focused on solving the bathymetric inversion problems using observed 

surface wave properties and simple physical models. For example, cBathy is a popular bathymetric inversion algorithm 

that uses the linear wave dispersion relationship to estimate the nearshore bathymetry with wave celerity obtained from 

remote sensing techniques and a Kalman filtered update framework [2]. The algorithm was found to deteriorate during 

storms when waves transition from non-breaking to breaking in the surf zone [3]. Another popular bathymetry inversion 
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technique is data assimilation, which combines observational data and dynamical systems to generate a state estimation 

while accounting for uncertainty in the observations and model dynamics [4]. Data assimilation tries to minimize a cost 

function based on the difference between observations and simulations with an initial estimate of the unknown parameters 

and uncertainties to regularize the solution [5]. Wilson et al. (2014) estimated bathymetry as an uncertain parameter in a 

data assimilation system with the ensemble Kalman filter based on time-dependent remote sensing observations. The 

results show that the bathymetry can be estimated with good accuracy, and nearshore forecasts can be improved by 

assimilating remotely sensed data. 

Recently, the development of machine learning (ML) methods, hardware resources, and sensing technologies have 

created new opportunities for using soft computing-based models to explore nearshore bathymetry [6]. Unlike the data 

assimilation method, soft-computing models do not require simulations from deterministic forward numerical models or 

knowledge about the uncertainty of observations and the uncertainty of the numerical model. Using the data assimilation 

method to solve the inverse problem can be computationally expensive, since it may require thousands or millions of 

forward model simulations for evaluating estimators and characterizing posterior distributions of parameters [7]. Thus, 

applying ML to obtain the solution of inverse problems would be desirable because it can execute faster. Recently, using 

PINNs (physics-informed neural networks) to solve inverse problems has been the focus of many studies, because the 

addition of physics-based loss terms can generate more accurate and robust results [7]. For example, Raissi et al. (2019) 

predicted the lift and drag forces of a system based on sparse data of the velocity field with physics-guided loss functions. 

Also, Kahana et al. (2020) used a neural network with a physically informed loss component to identify the location of an 

underwater obstacle, showing that the PINN approach can generalize well and produce promising results.  

The purpose of this study is to develop an inverse model for estimating nearshore bathymetry based on physics-

informed deep learning of remote sensing data (i.e., wave number and significant wave height) with PINNs. The feasibility 

of reconstructing wave fields and inferring water depths in shallow waters with scarce wave measurements was 

investigated. 

2 METHODOLOGY 

This study focuses on developing accurate inverse PINN models to estimate nearshore bathymetry with post-processed 

geophysical parameters from remote sensing platforms, such as X-band marine radar or stereo-photogrammetry, including 

wave heights and wave numbers. It is worth mentioning that the main purpose of this work is not to extract quantitative 

hydrodynamic information from surf zone imagery. Thus, the digital image processing of remote sensing data is not 

covered in this study. Moreover, it is assumed that the parameters derived from the remote sensing platforms are 

sufficiently accurate in this work. Two test scenarios were employed to assess the performance of PINNs for solving the 

depth inversion problems, which are linear waves over a 3D barred beach and nonlinear waves over an alongshore uniform 

barred beach.  

2.1 Energy balance equation for wave propagation in shallow waters 

In this study, we developed a novel composite PINN model to solve the depth inversion problem and reconstruct wave 

fields in the nearshore area. Wave shoaling, refraction, and depth-limited breaking were considered in this model. The 

governing equations encoded into the fully connected neural networks include the wave energy balance equation and 

dispersion relation. The effects of amplitude dispersion (i.e., nonlinear dispersion relation) on depth inversion and wave 

field prediction were also investigated. This study focuses on stationary wave fields without wind forcing and ambient 

currents. For water waves, the energy balance equation is given by 
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𝜕𝑒𝑐𝑔𝑦
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𝜕𝑒𝑐𝑔𝜃

𝜕𝜃
+ 𝑑𝑤 = 0 (1) 

where 𝑒 is the wave energy density in each directional bin, 𝑐𝑔 is the group velocity, 𝜃 represents the angle of incidence 

with respect to the x-axis, and 𝑑𝑤 is the dissipation of energy density caused by wave breaking [10]. The Janssen and 

Battjes (2007) formulation for wave breaking was applied in this work. The total wave dissipation was distributed 

proportionally over the wave directions using the following formulation 

 𝑑𝑤(𝑥, 𝑦, 𝜃) =
𝑒(𝑥, 𝑦, 𝜃)

𝐸(𝑥, 𝑦)
�̅�𝑤(𝑥, 𝑦) (2) 

where �̅�𝑤 denotes the expected value of the power dissipated per unit area. The root-mean-square wave height was 

calculated based on 𝐻rms = √
8𝐸

𝜌𝑔
, and 𝐸 =  ∫ 𝑒(𝜃)𝑑𝜃

2𝜋

0
. For unidirectional waves, the wave energy balance equation over 

an alongshore uniform beach becomes 
𝜕𝐸𝑐𝑔𝑥

𝜕𝑥
+ �̅�𝑤 = 0. 

2.2 Physics-informed neural networks 

By infusing the governing equations into the artificial neural networks, PINNs can bridge the gap between ML-based 

methods and scientific computations and deduce solutions involving partial differential equations. To solve the depth 

inversion problems over a 3D beach with the linear dispersion relation, the corresponding residuals were defined as 

 

 𝑓1(𝑥, 𝑦, 𝜃): =
𝜕𝑒𝑐𝑔𝑥
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+
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 𝑓2(𝑥, 𝑦): = 𝜔2 − 𝑔𝑘tanh(𝑘𝑑) (4) 

where ℎ represents the local water depth, 𝑘 is the wave number, and 𝜔 is the angular frequency. To consider the effects of 

amplitude dispersion on depth inversion [12] and wave field prediction for nonlinear waves over an alongshore uniform 

beach, the residuals were determined as 

 

 𝑓1(𝑥): =
𝜕𝐸𝑐𝑔𝑥

𝜕𝑥
+ �̅�𝑤 (5) 

 𝑓2(𝑥): = 𝜔2 − 𝑔𝑘(1 + ℱ1(𝑘𝑑)𝜖2𝐷)tanh (𝑘𝑑 + ℱ2(𝑘𝑑)𝜖) (6) 

where 𝐷 =
cosh(4𝑘𝑑)+8−2 tanh2(𝑘𝑑)

8 sinh4(𝑘𝑑)
, ℱ1(𝑘𝑑) = tanh5(𝑘𝑑), ℱ2(𝑘𝑑) = [

𝑘𝑑

sinh(𝑘𝑑)
]

4
, 𝜖 = 𝑘|𝐴|, and |𝐴| = 1/2𝐻𝑟𝑚𝑠. These 

residuals were used as restraints during the training of PINNs to generate physically consistent predictions. Additionally, 

the wave measurements scattered in the computational domain were also used to constrain the model, such as wave height, 

wave angle, and wave number. The schematic representation of the algorithm for solving depth inversion problems is 

shown in Figure 1. The loss function consists of two main parts. The first part corresponds to the collocation points (i.e., 

residual loss), where the physical constraints were imposed to encourage Eqn (3) and (4) (or Eqn (5) and (6)) to equal zero. 

The second part encouraged the outputs of PINNs to match wave parameters obtained from field observations (using the 

outputs of the physics-based nearshore model XBeach [13] in this study for PINNs testing). Therefore, the total loss 

function for solving the depth inversion problem of linear waves is given as 

 
ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + ℒ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

= ℒ𝑓1
+ 𝜆𝑓2

× ℒ𝑓2
+ 𝜆𝐻rms

× ℒ𝐻rms
+ 𝜆𝜃m

× ℒ𝜃m
+ 𝜆𝑘 × ℒ𝑘 

(7) 

where 𝜆𝑓2
,  𝜆𝐻rms

,  𝜆𝜃m
,  and 𝜆𝑘 are the weighting coefficients for balancing the interplay between different terms in the loss 

function [14]. Hyperbolic tangent was used in this study as the activation function, and the networks were initialized with 
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Xavier initialization. The network structure was kept identical to four hidden layers of 30 nodes for each test case. In this 

study, the training was implemented on an NVIDIA v100-sxm2 GPU with the TensorFlow platform. 

 

 

Figure 1. A schematic representation of the proposed algorithm for solving the depth inversion problems. 

2.2.1Three-dimensional barred beach. 

The wave condition offshore of the 3D barred beach was set as 𝐻rms = 1 m and peak wave period (𝑇p) = 8 s. The incident 

wave angle follows the directional distribution of cosm(𝜃 − 𝜃m) with 𝜃m = −30˚ and m = 20. Numerical simulations of 

𝐻rms and 𝜃m from XBeach were employed as training and testing data. The resolution of directional spreading of waves 

(𝑑𝜃) was set to 10° in both XBeach and PINN models, and the lower and upper directional limits were defined as -90° to 

90°, respectively. It was assumed that the wave number and wave angle were known at every location, meaning that the 

wave number and wave angle over the entire study area were used as training data for the model. The training data for 

𝐻rms were set at the locations listed in Table 1. Specifically, we randomly selected a total of 100 training points over the 

entire domain. Fifteen of them are in the offshore domain. Thirty-five are in the shoaling zone. The rest of the 50 points 

are in the surf zone. The total number of training points is about 2% of the entire computational data. To get a better 

accuracy, more training points were selected in the shoaling and breaking zones since strong wave height variations happen 

in these two areas. In reality, we do not know where is the shoaling zone and breaking zone since the bathymetry is 

unknown. Thus, it was assumed that the breaking zone is from 800 m to 980 m, and more training points were set in this 

region. A total of 4653 collocation points were uniformly distributed from 𝑥 = 0-980 m and 𝑦 = 20-480 m to constrain 

learning for generating physically consistent predictions. 

 

Table 1. The locations of training points of 𝐻𝑟𝑚𝑠  for reconstructing wave fields over the alongshore uniform barred beach. 

Location x = 0-500 m x = 500-800 m x = 800-980 m 

# training points 15 35 50 

 

Adam (adaptive moment estimation) and L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shanno with 

boundaries) were used as network training functions [15]. The Adam optimizer was employed to produce a better set of 

initial neural network variables, and L-BFGS-B was used to further fine-tune the PINN networks to minimize test errors 

[14]. The initial learning rate of Adam was set to 10-4 and then decreased to 80% of the previous rate every 5000 iterations. 

8×104 Adam iterations were implemented before the L-BFGS-B training, which was then automatically terminated based 
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on the increment tolerance. The error statistics were computed to quantify the prediction skills of PINNs, including root 

mean square error (RMSE) and coefficient of discrimination (R2). 

2.2.2 An alongshore uniform barred beach 

Compared to cBathy, one advantage of utilizing PINNs to solve the bathymetry inversion problem is that nonlinear 

dispersion relation could be embedded in the model.  cBathy inverts the linear wave dispersion relationship to estimate the 

nearshore bathymetry. The estimation accuracy of cBathy decreases with an increase in wave height due to the omission 

of amplitude dispersion of nonlinear waves [5]. To test the PINNs’ ability to account for the effect of wave nonlinearity in 

the nearshore, we used the nonlinear dispersion relation instead of the linear dispersion relation to reconstruct the wave 

field and estimate the bathymetry over an alongshore uniform barred beach with known wave numbers. The wave boundary 

condition of the nonlinear waves was set as 𝐻𝑟𝑚𝑠 = 1 m, 𝑇𝑝 = 8 s, and the incident wave angle of 30˚. The wave height 

training data was set at x = 100 m, and wave numbers were known every 4 m from x = 0 -1000 m. Similar to the PINN 

model for estimating the water depth of a 3D barred beach, Adam and L-BFGS-B were used as network training functions, 

with 4×104 Adam iterations conducted before L-BFGS-B started. To examine the prediction performance of the model for 

reconstructing the wave field, the outputs of 𝐻𝑟𝑚𝑠 were compared to the numerical solutions to the wave energy balance 

equation. 

3 RESULTS 

3.1 Water waves over a 3D barred beach 

In this section, the outputs from XBeach and PINNs were compared to investigate the feasibility of using PINNs to estimate 

water depth and reconstruct wave fields over a 3D barred beach. The red dots in Figure 2 (a) present the locations of 𝐻rms 

training points. The 3D plot shows the simulated spatial variation of 𝐻rms by PINNs, which is in good agreement with the 

numerical results from XBeach. The contour plot in Figure 2 (b) depicts the difference between the PINN simulation and 

true bathymetry. It can be observed that PINNs have good prediction skills for estimating the water depths with small 

errors (RMSE = 0.014 m). Also, comparisons of the simulation outputs from the PINNs and XBeach are shown in Figure 

2 (c), indicating that the PINN-predicted 𝐻rms and 𝜃m correlated well with those from XBeach. Overall, the developed 

PINN model shows a promising ability to estimate water depths and reconstruct wave fields over a 3D barred beach. 

3.2 Effects of amplitude dispersion on depth inversion and wave field prediction 

Figure 3 (a) shows that the PINN outputs correlate well with the numerical solution to the energy balance equation (RMSE 

values are 0.001 m and 0.019 m for estimating H_rms and d, respectively) with the nonlinear dispersion relation embedded 

in the model. It can be observed that the simulation skills of the PINN model with the linear dispersion relation deteriorate 

in the surf zone (Figure 3 (b)), suggesting that the linear PINN model has a similar pattern as cBathy. In other words, the 

PINNs embedded with the linear dispersion relation are not capable of learning the effect of nonlinear waves on the 

dispersion relation. This finding indicates that selecting an appropriate physical constrain is crucial for solving the depth 

inverse problems and reconstructing wave fields with sufficient accuracy. 
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Figure 2. Comparison between the XBeach and PINN outputs over the 3D barred beach. (a) spatial variation of the PINN-predicted 

wave fields. The red dots represent the location of training points; (b) the contour figure shows the difference between the PINN-

predicted depth and real bathymetry; (c) scatter plots of the predicted 𝐻rms and 𝑑. The plots only contain testing data. 

 

 

Figure 3. Comparisons between analytical and PINN-simulated 𝐻rms, wave angle, wave number, and water depth with (a) nonlinear 

dispersion relation and (b) linear dispersion relation. 

(a) 

(c) 

(b) 

(a) 

(b) 
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4 DISCUSSION 

The sensitivity of the performance of PINNs to the number and distribution of training points of 𝐻rms is investigated in 

this section. Because strong variations of wave height happen in the surf zone where wave breaking dissipates wave energy, 

we use different numbers of training points at x = 500-980 m. Unsurprisingly, the results indicate that the RMSE of 

𝐻rms decreases when the number of training points increases (Table 2). Furthermore, if the total number of training points 

is fixed, a higher accuracy (i.e., mean error of 𝐻rms) could be obtained when more training points were placed close to the 

shore from x = 800-980 m. This can be explained by the fact that the gradient of wave height variation is higher due to the 

depth-limited wave breaking. Since the wave number was assumed to be known at every point inside the computational 

domain, the accuracy of the estimated bathymetry is very good. It is worth mentioning that the model does not require the 

wave number at every location as training points (Section 3.2). 

 

Table 2. Error statistics of the simulated 𝐻𝑟𝑚𝑠, 𝜃𝑚, and 𝑑 over the 3D barred beach with different training points of 𝐻𝑟𝑚𝑠 applied in 

PINNs. 

 RMSE R2 Max error  
 𝐻rms (m)  d (cm) 𝐻rms d  𝐻rms (m) d (cm) 

o15n35o50a 0.005 1.450 0.998 1.000 0.171 1.63 
o15n35o40 0.006 1.460 0.998 1.000 0.155 1.59 

o15n35o30 0.017 1.520 0.984 1.000 0.409 1.72 

o15n35o20 0.016 1.470 0.989 1.000 0.474 2.02 
o15n35o10 0.032 1.460 0.979 1.000 0.452 2.24 

o15n30o50 0.008 1.450 0.997 1.000 0.369 1.91 

o15n20o50 0.008 1.450 0.996 1.000 0.350 1.91 
o15n10o50 0.010 1.470 0.995 1.000 0.388 1.93 

ao15n35o50 means 15, 35, and 50 training points were set at x = 0-500 m, 500-800 m, and 800-980 m, respectively.  

5 SUMMARY AND CONCLUSIONS 

In this study, we developed an inverse PINN model to estimate nearshore bathymetry based on remote sensing data (i.e., 

wave number and significant wave height) by combining the prior knowledge of wave mechanics into the fully-connected 

neural networks. The feasibility of reconstructing a wave field and estimating the water depth in shallow waters with 

limited field observations was investigated. Assuming surface wave celerity (or wave number) and wave height 

measurements are available from various remote sensing platforms, two test scenarios were used to assess the performance 

of PINNs for solving depth inversion problems, including linear waves over a 3D barred beach and nonlinear waves over 

an alongshore uniform barred beach. The results show that the developed PINN model is able to estimate 3D nearshore 

bathymetry with sufficient accuracy. The spatial distribution of wave height can also be predicted with high resolution. 

Furthermore, the sensitivity of PINNs to the number and location of training points of 𝐻rms was investigated. It was found 

that the RMSE of 𝐻rms decreases when the number of training points increases. Moreover, if the total number of training 

points is fixed, higher accuracy can be obtained when more training points are placed in the surf zone. In contrast, the 

model performance for predicting bathymetry is less sensitive to the locations of training points of 𝐻rms.  

One advantage of applying PINNs to solve bathymetry inversion problems is that the effect of wave nonlinearity can 

be embedded in the model. In this study, we used the nonlinear dispersion relation instead of the linear dispersion relation 

together with the energy balance equation as the physical laws to reconstruct the wave field and estimate the bathymetry 

over an alongshore uniform barred beach with known wave numbers. The results show that the PINN outputs correlate 

well with the direct numerical solution to the energy balance equation (RMSE values are 0.001 m and 0.019 m for 

estimating the wave height and water depth, respectively). 
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This study is the first attempt to investigate the capability of PINNs for estimating nearshore bathymetry and 

reconstructing wave fields with limited field observations. Though the current results are encouraging, open questions 

remain. For example, are PINNs able to infer the bottom friction coefficient or wave breaking parameters dynamically? Is 

it practical to use PINNs to solve depth inversion problems and reconstruct wave fields under storm conditions? What are 

the potential errors of PINNs when remotely sensed data are inaccurate and the embedded physics are incomplete? More 

studies will be carried out to answer those questions and to further test the performance of PINNs under field conditions. 
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