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ABSTRACT
Eight major supply chains contribute to more than 50% of the global
greenhouse gas emissions (GHG) [1]. These supply chains range
from raw material to end-product manufacturing. Hence, it is crit-
ical to accurately estimate the carbon footprint of these supply
chains, identify GHG hotspots, explain the factors that create the
hotspots and carry out what-if analysis to reduce carbon footprint
of supply chains. Towards this, we propose an enterprise decar-
bonization accelerator framework with a modular structure that
automates carbon footprint estimation, identification of hot spots,
explainability and what-if analysis to recommend measures to re-
duce carbon footprint of supply chains. To illustrate the working
of the framework, we apply it to the cradle to gate extent of palm
oil supply chain of a leading palm oil producer. The framework
identified that the farming stage is the hot spot in the considered
supply chain. As the next level of analysis, the framework identified
the hotspots in the farming stage and provided explainability on
factors that created hotspots. We discuss the what-if scenarios and
the recommendations generated by the framework to reduce the
carbon footprint of the hotspots and the resulting impact on palm
oil tree yield.

KEYWORDS
Supply chain, AI, Decarbonization, Carbon accounting, Hotspot
identification, what-if-analysis, Palm oil supply chain

1 INTRODUCTION
In the last few decades, supply chains have become more global,
multi-echelon, inter-connected, and dynamic leading to benefits in
terms of reducing costs, enhanced speed, diversifying operational
sourcing, and quality. However, these shifts bring with it the mas-
sive contribution of supply chains to GHG emissions. It is estimated
that goods and services that are traded internationally contribute
to about 22% of the global GHG emissions [2]. Eight major sup-
ply chains are contributing to more than 50% of the global GHG
emissions. These eight supply chains include food, construction,
fashion, fast moving consumer goods (FCMG), electronics, auto,
professional services and other freight. Of these, food contributes
to more than one third followed by construction which contributes
to 10% of the global GHG emissions [1].

Enterprises in general and particularly those who operate/are
part of the above-mentioned supply chains are under significant
pressure from investors, consumers, and policymakers to disclose
their GHG emissions and commit to reduce emissions. Over 20
percent of the world’s largest companies have set long term net-zero
∗Both authors contributed equally to this research.

targets [3]. To achieve net-zero targets, enterprises need technology
to measure, track, and decarbonize (reduce their emissions) while
building operational resiliency to the effects of climate change.

In this paper, wewill discuss about the novel framework/workflow
called Enterprise Decarbonization Accelerator (EDA). EDA per-
forms emission computation, hotspot identification with explain-
ability, and what-if analysis to provide recommendations in an
automated manner to accelerate decarbonization journey of en-
terprises. To demonstrate the efficacy of the EDA in accelerating
the decarbonization process, we will apply the EDA to palm oil
supply chain to measure carbon footprint, identify, explain the
factors casuing the hotspots, and use what-if analysis to provide
recommendations to mitigate carbon hotspots of the enterprise.

The rest of the paper is organized as follows. Section 2 summa-
rizes the related work. Section 3 describes the EDA framework to
estimate GHG emissions, identify hot spots, provide explainability
and perform what-if analysis to provide recommendations for re-
duction/removal of hot spots. Section 4 describes palm cultivation,
the plantation data obtained from a leading producer of palm oil and
application of EDA to the palm oil supply chain. Section 5 presents
the results obtained by applying the EDA to the palm oil supply
chains. Finally, we present the concluding remarks in section 6.

2 RELATEDWORK
Decarbonization of supply chain is an important area of study,
which includes accounting of carbon footprints, identifying an in-
efficient process, understanding the factors which attributes to low
performance and recommending the feasible intervenable actions
for overall carbon reductions. This enables businesses to identify
sustainability impacts across a range of attributes such as economic,
environment, social and governance. It allows decision-makers to
identify sustainability opportunities and prioritize reduction ac-
tions. In the contemporary literature, most of the decarbonization
works revolves around carbon accounting and hotspot identifica-
tion by using either qualitative [4] or quantitative approaches[5].

Hot Spot Analysis (HSA) [4] is a qualitative approach that uses
relative relevance numbers from existing studies to give a rough
overview of relevant sustainability aspects. This approach has been
used to identify hotspots in supply chains by comparing the rele-
vance numbers. [6] utilised HSA to integrate social and environ-
mental dimensions along the entire value chain and to identify
relevant aspects for a product specific sustainability management.
[7] used the Social Hotspot Database to study the social hotspots of
numerous product categories, while [8] conducted a global hotspot
analysis concerning food loss and waste (FLW) with its associated
GHG emissions. HSA has also been used to analyze environmental
impacts of food supply chains, like [9] performed HSA to identify
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Figure 1: Enterprise Decarbonization Accelerator Framework

resource intensive hotspots in the life cycles of coffee and cream
cheese. However, these qualitative approaches have limited applica-
tions as they do not provide any actual values for the impact factors
but rather use relative relevance numbers to give a rough overview
of relevant sustainability aspects.

Life Cycle Assessment (LCA) is a quantitative systems approach
aimed at assessing the environmental impact of a product through-
out its life-cycle. Works like [10], [11] and [12] utilized LCA to
evaluate carbon dioxide equivalent (CO2e) emissions and identify
carbon hotspots in bio-diesel, maize silage and beef supply chains
respectively. However, both HSA and LCA methodologies do not
provide explainable insights of the identified hotspots. Also, they
do not provide the stakeholders with recommendations that can
help them in reducing their environmental impact. Attributional
and Consequential LCA (ALCA and CLCA) [13] address this gap to
some extent. ALCA provides attribution of total emissions from the
processes and material flows in a product life cycle, while CLCA
provides information about the consequences of changes in the
level of output of a product on the total emissions associated with
the product. However, these approaches are limited to product life
cycle and cannot be used for enterprise level decarbonization.

As we will be evaluating the proposed framework for estimating
the carbon footprint and hotspot identification for palm oil supply
chain, we next discuss the related work in the space of palm oil sup-
ply chains. Several studies have focused on estimating the carbon
footprint associated with the production of palm oil. [14] evaluated
crude palm oil’s GHG balance through an LCA approach, using
average data from Brazil region, while [15] assessed water footprint
of palm oil supply chain. Few works have focused on specific parts
of the cradle to gate extent of the supply chain, such as LCA of
oil palm seedling [16] and transportation [17]. Most of the prior
work on palm oil supply chain estimate carbon footprints through
the LCA approach, using existing databases and process-specific
emission data which are then used to identify carbon-intensive
phases.

However, these works do not include explainability, [18] or what-
if analysis and recommendations [19] that can be helpful for emis-
sion reduction. In this work, we seek to address this gap by propos-
ing Enterprise Decarbonization Accelerator, a novel framework
that performs emission computation, hotspot identification with

explainability insights, and what-if analysis to recommend interven-
able measures for reducing carbon footprint and help enterprises
accelerate their decarbonization journey.

3 DECARBONIZATION ACCELERATOR
FRAMEWORK

We have designed and developed an Enterprise scale Decarboniza-
tion Accelerator Framework (as shown in Fig.1) that would be able
to perform the processes associated with emission computation,
hotspot identification with explainability, and what-if analysis to
provide recommendations in an automated manner to accelerate
decarbonization journey of enterprises. The proposed Enterprise
Decarbonization Accelerator (EDA) Framework consists of an AI
workflow with four modules i.e. carbon accounting, carbon hotspot
identification, explainability, counterfactual queries and recommen-
dations engine. Next, we describe the four modules.

3.1 Carbon Accounting
This module ingests sector specific (e.g. combustion of fossil fuel,
application of fertilizer, fugitive leaks, etc) as well as cross-sector
(e.g consumption of electricity, transportation, etc) activity data
from any enterprise and leverages GHG protocol compliant Carbon
Performance APIs to convert the activity data into emissions lever-
aging location specific emission factors. This carbon accounting
module is built using Scope1 (direct emission from stationary com-
bustion, mobile combustion, and fugitive emissions), Scope2 (usage
of electricity) and Scope3 (indirect value chain emissions) APIs.
For any supply chain, we convert activities into above mentioned
categories and compute carbon footprint using above mentioned
APIs. Here is a brief overview of APIs used to compute the carbon
footprint of a supply chain.

3.1.1 Scope1:Stationary combustion. Combustion of fuels in sta-
tionary (non-transport) combustion sources results in the following
greenhouse gas (GHG) emissions: carbon dioxide (CO2), methane
(CH4), and nitrous oxide (N2O). Sources of emissions from sta-
tionary combustion include boilers, heaters, furnaces, kilns, ovens,
flares, thermal oxidizers, dryers, and any other equipment or ma-
chinery that combusts carbon bearing fuels or waste stream mate-
rials.

2022-06-15 12:32. Page 2 of 1–8.
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3.1.2 Scope1:Mobile combustion. Mobile combustion means emis-
sions from the transportation of materials, products, waste, and em-
ployees resulting from the combustion of fuels in company owned
or controlled mobile combustion sources (e.g., cars, trucks, buses,
trains, airplanes, ships, etc.). The greenhouse gases CO2, CH4, and
N2O are emitted during the combustion of fuels in mobile sources.
As per the GHG protocol, we have adopted fuel based approach for
accounting carbon footprint from mobile combustion. We consider
location, vehicle type, fuel type and amount as input to mobile
combustion API.

3.1.3 Scope1:Fugitive emission. Fugitive emissions are leaks and
other irregular releases of gases or vapors from a pressurized con-
tainment - such as appliances, storage tanks, pipelines, wells, or
other pieces of equipment - mostly from industrial activities. We
have leveraged sales based approach for computing carbon foot-
print for fugitive emissions.

While stationary, mobile, and fugitive emissions are common
scope1 activities across enterprises, Scope 1 also includes industry
specific activities such as applying fertilizer to agricultural fields or
production of Ozone depleting gases. In such cases, our framework
has flexibility to include industry specific Scope 1 carbon accounting
models.

3.1.4 Scope2:Emission from electricity consumption. Scope 2 API
accounts for GHG emissions from the generation of purchased elec-
tricity consumed by a company. Purchased electricity is defined as
electricity that is purchased or otherwise brought into the organi-
zational boundary of the company. Scope 2 emissions physically
occur at the facility where electricity is generated and attributed to
the users based on their consumption. There are two approaches
for Scope 2 i.e. location based approach and market based approach.
For simplicity, in this paper, we used location based approach.

3.1.5 Scope3. Scope 3 emissions are a consequence of the activities
of the company, but occur from sources not owned or controlled
by the company. Some examples of Scope 3 activities are extraction
and production of purchased materials; transportation of purchased
fuels; and use of products and service. In this paper, we used Scope
3 API to compute the carbon footprint for logistics using weight
distance method.

This module also extracts carbon performance related features
such as weather condition (e.g. temperature, humidity), asset spe-
cific parameters (e.g. age, size/capacity), and operational parame-
ters (e.g. load, fuel/electricity consumption) associated with carbon
performance of the asset/operation. While weather data is pulled
automatically based on location information, users need to define
the asset specific parameters as well as operational parameters as
domain specific knowledge is required here.

3.2 Carbon Hotspot Detection
Carbon hotspot detection module ingests the carbon footprints
of assets along with other relevant associated derived features
and selects the best prediction and outlier detection algorithm
from the library to identify the list of low carbon performing as-
sets/operations. It mainly consists of two sub-modules, namely, (i)
emission prediction model and (ii) outlier (note that we use the

Figure 2: MDSS Pseudocode

terms, outlier, anomalous and hotspot interchangeably) detection
model as follows:

3.2.1 Emission prediction model. We learn the functional relation-
ship between carbon footprint of an asset and other independent
associated derived factors by selecting best prediction model from
the library. We provide a library of well known ML models (such as
Linear regression, Decision tree, Random Forest, Gradient boosting,
etc.)

3.2.2 Outlier Detection model. In this module, we supports out
of the box outlier detection module (e.g. PyOD, Isolation Forest,
etc) as well as advanced method such as Multi-Dimensional Subset
Scan (MDSS). We used an extension of Multi-Dimensional Subset
Scan (MDSS) [20, 21] algorithm for subset scanning of the data.
Fig. 2 shows the algorithm provided in [21]. This methodology is
able to identify the most anomalous subgroup of feature space in
linear time, amongst the exponentiallymany possible ones, enabling
tractable subgroup analysis. The general form of the method is

𝑆∗ = 𝑀𝐷𝑆𝑆 (D, E, 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 ) (1)
where 𝑆∗ is the most anomalous subgroup, D is a dataset with
outcomes 𝑌 and features X, E are a set of expectations for 𝑌 ,
and 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 is an expectation-based scoring statistic that mea-
sures the amount of anomalousness between subgroup observa-
tions and their expectations. The goal of MDSS is to identify a
subset of the data 𝑑 (𝑆) ⊆ D corresponding to subgroup 𝑆 that max-
imizes 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 . For 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 , we use log-likelihood ratio defined
as 𝐹 (𝑆) = log (Pr (𝐷 | 𝐻1 (𝑆)) /Pr (𝐷 | 𝐻0) . The alternate hypothe-
sis 𝐻1 (𝑆) assumes that datapoints 𝑥𝑖 ∈ 𝑑 (𝑆) are drawn with mean
𝑞𝜇𝑖 and datapoints 𝑥𝑖 ∉ 𝑑 (𝑆) are drawn from mean 𝜇𝑖 , for constant
multiplicative factor q>1 known as relative risk. The null hypothe-
sis 𝐻0 assumes that all datapoints, including 𝑥𝑖 ∈ 𝑑 (𝑆) are drawn
with mean 𝜇𝑖 . This definition satisfies the Additive Linear-Time
Subset Scanning (ALTSS) property, which is required for MDSS to
be tractable [22]. Eqn. 2 gives the general 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 used by MDSS.
𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 (𝑆) = max

𝑞>1

∑︁
𝑥𝑖 ∈𝑑 (𝑆)

(log Pr (𝑥𝑖 | 𝑞𝜇𝑖 ) − log Pr (𝑥𝑖 | 𝜇𝑖 ))

(2)
2022-06-15 12:32. Page 3 of 1–8.
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Figure 3: Palm Cultivation: Overview

3.3 Explainability
The interpretation of machine learning model is very essential to
understand the feature attribution since most of the models are
inherently not apparent. This module uses the well knownmodel ag-
nostic methodology called SHapely Additive exPlanations (SHAP)
[18] to derive the insights about local and global interpretability for
the carbon hotspots. The SHAP value gives the marginal contribu-
tion of each associated feature for the carbon footprint of an asset.
We provide a pluggable framework where the other explainable
models can be integrated into this workflow.

3.4 Counterfactual queries and
recommendation engine

In this module, we provide a framework to leverage the state of
the art as well as custom counterfactual queries and recommenda-
tion engines. This framework has inbuilt recommendation module
which leverages the Diverse Counterfactual Explanations (DiCE)
methodology from [19]. DiCE generates counterfactual explana-
tions for any ML model through perturbations within a feasible
range that change the output of a machine learning model. It also
supports simple constraints on features to ensure feasibility of the
generated counterfactual examples. This framework takes an input
from user on the set of controllable features with its feasible range
and the expected target emissions for intervenable actions, and
generates the set of best recommendations.

4 CASE STUDY: PALM CULTIVATION
Sustainable sourcing of palm oil has gained significant interest
over past years. It is thus important for palm producers to iden-
tify factors responsible for higher emissions, while also develop
explainable intervention plans to lower their carbon footprint. We
use our Enterprise Decarbonization Accelerator (EDA) Framework
to estimate GHG emission of palm plantation, perform explain-
able hotspot identification and develop recommendation plans for
reducing carbon emissions.

4.1 Overview
Fig.3 gives an overview of palm cultivation. The first step is to
produce seedlings from pre-germinated seeds in nurseries, along
with land preparation. Then the seedlings are planted manually and
fertilizers containing elements such as nitrogen (N), potassium (K)
and phosphorus (P) are applied. Fertilizers used are manufactured
in factories from where they are taken to the port nearest to the
plantations via shipping tankers. Then they are delivered by heavy
good vehicles (HGV) such as trucks to the plantations. Along with

fertilizers, diesel is also transported to the plantations, where it
is used in irrigation, transportation of fertilizers and workers to
the farms, land preparation and maintenance. It takes about 3-4
years for oil palms to produce fruits suitable for harvest. Palm trees
continue to produce fruit for around 30 years and they are harvested
periodically. Palm is harvested manually wherein fronds are cut
off to dislodge fresh fruit bunches (FFB), which fall to the ground
and are then collected. The fruit bunches are transported to oil
mills by light good vehicles, where they are subjected to industrial
processing to obtain crude palm oil (CPO) and crude palm kernel
oil (CPKO), as well as by-products such as empty fruit bunches
(EFB), fibers, shells and palm oil mill effluent (POME). These by-
products are returned to the field as manure. Electricity is used
in oil extraction phase to power machinery such as threshers and
motors of conveyors.

GHG emissions from the palm supply chain can be divided into
the following stages - manufacturing, agriculture, and transporta-
tion and electricity usage. Manufacturing includes all the emissions
resulting from the production of fertilizers and electricity and the
extraction of crude palm oil. Agriculture includes all the emissions
resulting from activities related to planting and harvesting of palm
produce. Transportation includes emissions resulting from trans-
porting fertilizers and diesel to palm plantations, and FFB produce
from plantations to mills. Lastly, emissions due to electricity usage
includes all the indirect emissions resulting from the consumption
of electricity in the supply chain.

Figure 4: Heatmap showing normalised annual yield from
the farm blocks at different age

4.2 Palm Plantation data
Palm plantations are divided into smaller units called blocks. We
use our framework to analyze the performance of palm plantation
at the block level, using data from 25 palm blocks for 14 years, from
the year of plantation, upto the 14th year of cultivation of each
block.We consider important factors which impact palm cultivation
and captures the carbon emission performance of blocks, such as
nitrogen content in the fertilizer application, carbon and nitrogen
content in manure application (EFBh and pruned fronds), age of
the farm block, initial soil organic carbon content at the depth of
0-15cm and 15-45cm, annual yield and the weather parameters
(annual precipitation and temperature statistics). Data is obtained
from a leading producer of palm oil. For the sake of anonymity, we

2022-06-15 12:32. Page 4 of 1–8.
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Figure 5: Denitrification-Decomposition (DNDC) model workflow [23]

will not disclose the name of the palm oil producer. Along with the
farm plantation data, we also use relevant data from cradle to gate
extent of palm oil supply chain for other stages - manufacturing,
transportation and electricity

Fig. 4 shows the heatmap of annual yield of the 25 blocks at
different ages, where yield of each block has been normalised using
min-max scaling. Since palm plantations produce their first harvest
in the 3rd-4th year after plantation, the yield is near zero for the
first 3 years across all the blocks. We see that the farm blocks have
more yield as their age increases, with maximum yield observed
around the 12th year of plantation across most of the blocks.

5 EXPERIMENTATION AND RESULTS
In this section, we discuss the results that are obtained by following
the methodology outlined in Sec. 3 for palm plantation blocks and
draw useful insights.

5.1 Carbon Footprint of Palm Blocks
We have used the physics-based Denitrification-Decomposition
(DNDC) model [23] to estimate the carbon footprint of palm plan-
tation. The model bridges the chemical reactions in soil with the
ecological drivers (climate, soil, vegetation and farming practices)
and environmental factors (temperature, moisture, pH, redox poten-
tial (Eh), and simulates carbon and nitrogen dynamics. The DNDC
model predicts crop growth, soil temperature and moisture, soil
carbon sequestration, emission of carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O) along with other trace gases.

The fig. 5 shows the inputs, outputs and components of the
model. The inputs to the model are the soil data (type, clay fraction,
amount of initial soil organic carbon), weather data (temperature,
precipitation, wind speed, solar irradiation), crop data, farming
practices (fertilizer, manure and irrigation schedules, tillage infor-
mation), planting and harvesting schedules. The two-component
DNDCmodel has six submodules, namely, soil climate, crop growth,
denitrification and decomposition, nitrification and fermentation.

Our framework computes carbon footprint at each stage from
cradle to gate, i.e. raw material extraction to CPO production lever-
aging the APIs mentioned in Sec. 3.1 and the DNDC model. Emis-
sions related to activities within the organizational boundary were

Figure 6: Stage-wise distribution of carbon emission

computed using Scope1, Scope2 APIs and DNDC model. Upstream
emissions (i.e. raw material extraction and manufacturing of fer-
tilizer) and emissions related to transportation of upstream raw
material and fertilizer were computed using the Scope3 logistic
API. At the farming stage, DNDC tool has been used to precisely
compute the carbon footprint due to farming activities. The frame-
work uses "Carbon Dioxide Equivalent" or "CO2e" as the standard
unit for measuring carbon footprint. For any quantity and type of
greenhouse gas, CO2e signifies the amount of CO2 which would
have the equivalent global warming impact. A quantity of GHG can
be expressed as CO2e by multiplying the amount of the GHG by its
Global Warming Potential (GWP), where GWP is the heat absorbed
by any greenhouse gas in the atmosphere, as a multiple of the heat
that would be absorbed by the same mass of carbon dioxide (CO2).
For example, the GWP value for N20 is provided as 265 in IPCC
Fifth Assessment Report, 2014 (AR5) [24, 25]. Therefore, if 1kg of
N2O is emitted, this can be expressed as 265kg of CO2e (1kg N2O *
265 = 265kg CO2e).

The emissions were divided into four stages - farming, manu-
facturing, transportation and electricity as mentioned in Sec. 4.1.
Fig. 6 shows the stage-wise distribution of carbon emissions in the
cradle to gate palm oil supply chain, averaged across the 14 years of
plantation data. The plot shows that the farming stage is the major
source of emission in the supply chain. Therefore, in this paper, we
will focus on the farming stage, and use our framework for block
level analysis of palm plantation.
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Figure 7: Normalized annual equivalent carbon emission
(CO2e) from farm blocks at different age

The DNDC model gives the emission of GHG gases such as CO2,
CH4 and N2O from the farming stage at daily intervals. For our
analysis, we have aggregated the GHG emission to annual temporal
resolution. Since all the palm plantation blocks are located in the
upland mineral soil, the methane emission from the farming stage
is very negligible. We have considered only the soil CO2 emission
from decomposition process and N2O emission from nitrification
and denitrification process to compute the total carbon footprints
(CO2e).

Fig. 7 shows the heatmap of annual CO2e emission of the 25 palm
plantation blocks at different ages, where the emission numbers
are normalized across all the blocks using min-max scaling. All 25
blocks receives an equal amount of fertilizers for the first four years
and for subsequent years, the amount of fertilizers and manures are
determined based on the age and soil testing. We can see that the
annual CO2e emission are low and almost in similar range for the
first four years and starts to show higher value as the age increases
across all the blocks.

5.2 Block level Hotspot Identification
The annual carbon footprint of the farm blocks along with the
plantation data detailed in Sec. 4.2 is used for hotspot identification.
We first use the emission prediction module to model the block level
carbon footprint of palm blocks using Random Forest Regressor.

The predicted carbon emissions serve as the expected emissions
E, to be used by MDSS based outlier detection module. We use
Gaussian scoring function [22] as 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 , which uses Gaussian
distribution to model the log likelihood ratio statistic defined in
equation 2. This serves as the statistical measure of divergence
between subgroup observations and their expectations. Gaussian
scoring function for a subgroup 𝑆 is given by [22]:

𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 (𝑆) = max
𝑞>1

∑︁
𝑥𝑖 ∈𝑑 (𝑆)

𝑦𝑖𝜇
(𝑞 − 1)
�̂�2

+
∑︁

𝑥𝑖 ∈𝑑 (𝑆)
𝜇2

(
1 − 𝑞2

2�̂�2

)
(3)

where, 𝑦𝑖 are the observed values in the subset 𝑑 (𝑆) belonging to
subgroup 𝑆 , 𝜇, and �̂�2 are the expected mean and variance of the
subgroup. We perform MDSS based outlier detection, as outlined
in 3.2.2 to obtain hotspot farm blocks, with 𝑠𝑐𝑜𝑟𝑒𝑏𝑖𝑎𝑠 as defined
in equation 3. B2 and B3 are identified as hotspot blocks across
multiple years. In Fig. 8 the red region depicts feature space of the
anomalous subgroup 𝑆∗ identified by MDSS. From this, we observe

that blocks with very low or high fertilizer application, high manure
application and moderate yield are identified as hotspots. However,
this does not provide explainable insights or help with identifying
opportunities for reducing emissions. To address this, we will next
analyze the hotspot blocks using explainability and what-if scenario.

Figure 8: Anomalous subgroup identified by MDSS

5.3 Hotspot Explainability Analysis
To understand the factors that dictates the variation in carbon foot-
prints from palm plantations, we have used SHAP value to identify
the marginal contribution of all the relevant features. We begin
with learning the prediction model with farming practices, soil
properties and weather related parameters as input features for
predicting the soil CO2 and N2O emission independently. The indi-
vidual emission regressor model will give us more insights about
the dominating features that influences the respective emissions.
Figs. 9 and 10 shows the holistic summary of feature importance for
CO2 and N2O emission regressor model respectively using SHAP
value.

From fig. 9, we observe that for soil CO2 emissions, the most
dominating features are plantation age, the amount of nitrogen
content in the manure and fertilizers, annual yield, annual precip-
itation and the initial soil organic carbon (SOC) at the depth of
15cm-45cm and 0-15cm. Since the CO2 emission is the product of
soil decomposition and it is clear that the above factors are influ-
encing the rate of decomposition process. The pruned palm fronds
and the EFBs are the main source of manure applications and it has
high carbon to nitrogen ratio. Because of high carbon content, the
manure takes precedence over fertilizer in the feature importance
plot. The amount of manure and fertilizers tends to increase with
age and thus the increase in annual yield. For SOC at the depth of
0-15cm and 15cm-45cm, we see the modest impact with a higher
value leading to increase in CO2 while the lower value having neu-
tral impact. This can be attributed to the capacity of soil to hold
more carbon without getting saturated. The higher SOC content
in the soil tends to have low holding capacity and thus more free
carbon to participate in the decomposition process.

Similarly from fig. 10, we see that for N2O emission, the dominat-
ing features are same as of CO2 emission but the order of precedence
and the impact are quite different. The nitrogen content in fertilizer
takes the precedence followed by annual precipitation and then the
manure application. The N2O emission is the product of nitrifica-
tion and denitrification process as shown in fig. 5. It is evident from
the DNDC model workflow, the presence of nitrate and ammonium
ion with high precipitation tends to be a conducive environment
for N2O emission.
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Since the dominating features of soil CO2 and N2O emissions
are similar, it will be appropriate to investigate the feature impor-
tance of total carbon footprint (CO2e). This will also capture the
interdependency among soil CO2 and N2O emissions and helps the
enterprise to focus on one metric for the overall carbon footprint
reduction. Fig. 11 shows the global interpretation of feature impor-
tance for the CO2e emission regressor model using Shapley value.
The order of feature importance is same as that of soil CO2 and it
shows that the proportion of soil CO2 is larger than N2O. Based
on the features SHAP value, we infer that in general, following
factors lead to an increase in CO2e - (i) high fertilizer and manure
application results in higher emission. (ii) older blocks tend to have
a higher carbon footprint associated with them. (iii) Soil organic
carbon at depth 0-15cm (SOC_45) and 15-45cm (SOC_15) has a
modest impact, with high soil organic carbon leading to increase
in carbon impact, while low SOC having neutral impact.

Figure 9: Global Explainability for CO2 emission

Figure 10: Global Explainability for N2O emission

We also perform explainability analysis of the identified hotspot
blocks to identify factors behind low performance of the blocks.
We use local explainability SHAP plots as mentioned in Sec. 3.3.
The plot shows which factors contribute to the increase or decrease
in CO2e of the hotspot blocks, when compared to the baseline of
average carbon footprint. Fig. 12 and Fig. 13 provide the plots for
two hotspot blocks.

From Fig. 12, we observe that high SOC_15 and SOC_45 content,
high manure application is resulting in increase in emissions, while
low fertilizer application is lowering the carbon footprint. The

Figure 11: Global Explainability for CO2e emission

block also has a moderate yield which could be due to low fertilizer
application. From Fig. 13, we can infer that very high fertilizer
and manure application are responsible for high emissions. The
block has a good yield performance, however, it has a low carbon
performance when compared to other blocks. The observations are
in accordance with the insights drawn from Fig. 11 earlier.

The two explainability plots share some common factors, we can
observe that high fertilizer and high manure application negatively
impact the carbon performance of the farm blocks.

Figure 12: Palm Plantation block B2 - Local Explainability

Figure 13: Palm Plantation block B3 - Local Explainability

5.4 Counterfactual Recommendation
Recommendation Engine introduced in Sec. 3.4 is used to generate
counterfactual recommendation plans for the hotspot blocks to
reduce their carbon footprint. We focused on finding the set of
intervenable features which can be perturbed to reduce the CO2e
emission without compromising on the yield produced by palm
plantations. Figs. 14 and 15 shows the intervention plans generated
by the engine for the two hotspot blocks. We observe that for both
the blocks, the fertilizer and manure application are identified as the
intervenable areas. For B2, we generated the counterfactual query
to produce a set of three best diverse recommendation to restrict the
CO2e emission within the range of 10 to 25 tonnes of CO2e. From
fig. 14, we observe that reducing fertilizer application by around
10% and manure application by around 30% can help in reducing
the carbon emission by roughly 20%, with negligible impact on
the yield. Similarly, for B3, we generated the counterfactual query
to produce the diverse set of four best recommendation without
impacting the yield. From fig. 15, we see that reducing manure
application by 25%-30% can reduce the carbon emission by around
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10% with negligible impact on the yield for B3 palm plantation
block.

Figure 14: B2 Counterfactual recommendations

Figure 15: B3 Counterfactual recommendations

6 CONCLUSION AND FUTUREWORK
In this paper, we presented an unified novel framework called En-
terprise Decarbonization Accelerator (EDA) to accurately estimate
the carbon footprint at enterprise or process level across all types
of asset classes, identify GHG hotspots and explain the factors that
create the hotspots and carry out what-if analysis to reduce the
carbon footprint. The efficacy of the framework is demonstrated
with a palm oil enterprise data. Results presented in this paper
indicate that agriculture stage is the most carbon intensive and
blocks in which high fertilizer amounts were applied and low yields
were obtained are the hot spots. This enabled customization of
farming practices such as right amount of fertilizer or manure for
low performing blocks which would not only improve their yield
but also reduce their carbon footprint and ensures profitability in a
sustainable manner. The proposed framework is generic, industry
agnostic, and can be used seamlessly across enterprises (IT, oilgas,
Energy Utility, etc). While this framework provides short term
operational recommendations, in future, we plan to extend this
framework for long term strategic recommendations to accelerate
net-zero decarbonization journey of enterprises.
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